feature article
Subscribe Now

Addressing the Graphics Revolution for Automotive Instrumentation Design Using FPGAs

Since the early 1990s, developers of advanced DA systems have striven to provide a safer, more convenient driving experience. Over the past two decades, DA features such as ultrasonic park assist, adaptive cruise control, and lane departure warning systems in high-end vehicles have been deployed. Recently, automotive manufacturers have added rear-view cameras, blind-spot detection, and surround-vision systems as options. Except for ultrasonic park assist, deployment volumes for DA systems have been limited. However, the research firm Strategy Analytics forecasts that DA system deployment will rise dramatically over the next decade.

In addition to government legislation and strong consumer interest in safety features, innovations in remote sensors and associated processing algorithms that extract and interpret critical information are fueling an increase in DA system deployment. Over time, these DA systems will become more sophisticated and move from high-end to mainstream vehicles, with FPGA-based processing playing a major role.

System designers working on DA processing platforms must consider architectural flexibility, platform scalability, external memory bandwidth, on-chip memory resources, high-speed serial interfaces, and parallel/serial process partitioning. The challenge is to strike an appropriate balance between meeting these needs and maintaining a competitive product cost structure. In this quest, FPGA technology is a viable alternative to standard ASSP and ASIC approaches. In particular, the resource attributes of the XA Spartan-6 family offer unique options and capabilities in meeting the DA processing platform requirements. With today’s FPGAs utilizing 40 nm process nodes and 7 series devices moving to 28 nm, their competitive position as a DA processing platform of choice is very strong for some time to come.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

IoT Data Analysis at the Edge
No longer is machine learning a niche application for electronic engineering. Machine learning is leading a transformative revolution in a variety of electronic designs but implementing machine learning can be a tricky task to complete. In this episode of Chalk Talk, Amelia Dalton and Louis Gobin from STMicroelectronics investigate how STMicroelectronics is helping embedded developers design edge AI solutions. They take a closer look at the benefits of STMicroelectronics NanoEdge-AI® Studio and  STM32Cube.AI and how you can take advantage of them in your next design. 
Jun 28, 2023
34,611 views