industry news
Subscribe Now

Nanotherm LC solves the thermal management challenge of CSP LEDs

30 January 2017, London UK — Thermal management innovator Cambridge Nanotherm today announces how its Nanotherm LC thermal management solution addresses the unique needs of chip-scale packaging (CSP) LEDs.

CSP LEDs have several benefits over traditional high-power LEDs (HP LEDs), giving module designers the ability to produce smaller, brighter and more cost-effective luminaires. The market for CSP LEDs is growing rapidly. Yole Développment predict CSPs will make up 34% of the HP LED market by 2020.

However, CSPs also present a significant thermal challenge. Traditional HP LEDs have a ceramic submount onto which the LED die is mounted. This spreads the heat from the die before it reaches the printed circuit board, helping to keep the junction temperature of the die within its approved operating temperature. CSPs do not use a submount; instead the P and N contacts are metalised enabling the die to be soldered directly onto the PCB (usually a metal-clad PCB — MCPCB). This approach reduces the cost, and size, of the finished LED package.

The downside is removing the ceramic submount (and its heat spreading abilities) makes CSPs an intense ‘point source’ of heat that most MCPCBs simply cannot handle. The challenge is conducting the concentrated thermal flux through the dielectric layer of the PCB and into the metal board where it can be spread and removed by the heatsink. If the heat is not removed quickly enough there’s a significant risk of the LED overheating and failing catastrophically. This situation is exacerbated by the ability to mount CSP LEDs extremely closely together — a benefit for shrinking module designs, but a major headache when it comes to thermal management as the intensity of the heat is increased significantly.

The key to understanding this challenge is the dielectric layer. MCPCBs are usually made of an epoxy resin mixed with ceramic to create a thermally conductive, but electrically isolating, barrier. However, there’s a limit to how much ceramic can be added before the composite become friable, restricting the thermal conductivity of the layer.

Cambridge Nanotherm’s approach to thermal management provides a unique solution to this challenge. A heavily patented electro-chemical oxidation (ECO) process converts the surface of an aluminium board into a super-thin alumina dielectric layer. This nanoceramic alumina has a thermal conductivity of 7.2 W/mK, which, coupled with being just tens of microns thick, makes for a composite thermal performance of 115 W/mK — much higher than any competitive MCPCB. This means the heat from the CSP LEDs is conducted efficiently through the dielectric and into the aluminium board, ensuring the LED junction temperature is kept at a stable temperature.

Cambridge Nanotherm sales and marketing director Mike Edwards said: “CSPs, particularly Nichia’s D.M.C. LEDs, bring significant cost and manufacturability benefits to LED designers. However, by removing the heat spreading submount they push the thermal challenge from the LED manufacturers to the module and luminaire designers who now need new and innovative ways to handle the heat.

“Epoxy-filled MCPCBs struggle to cope with the thermal profile of CSP designs, particularly when they are mounted close together on a module. Nanotherm’s unique nanoceramic MCPCBs overcome these limitations, enabling designers to build increasingly power dense modules. This, coupled with our comprehensive manufacturing capabilities, offers designers the optimum route to realising their CSP designs.”

This news comes off the back of Cambridge Nanotherm’s recent expansion of its manufacturing capabilities to meet increasing demand for its thermal management technology. In keeping with its wider philosophy, Cambridge Nanotherm is constantly pushing to make its technology as easy to implement as possible. To this end the company has established partnerships with a wide network of PCB and thin-film manufacturers to offer a broad and comprehensive range of options for circuitisation, quality, volume and standards.

Editors’ notes

About Cambridge Nanotherm Ltd

Cambridge Nanotherm manufactures the most efficient thermal management substrate technology for high-powered electronics. A patented electro-chemical oxidation (ECO) process creates a super-thin nanoceramic layer on the surface of aluminium to form a dielectric with exceptionally high thermal conductivity. This combination of the industry’s thinnest dielectric with the highest thermal conductivity yields the lowest thermal resistance and provides the platform for Cambridge Nanotherm’s core products.

Nanotherm LC has the highest thermal performance of any MCPCB, making it the perfect choice for thermally demanding electronics applications such as high-power LED and power electronics modules.

Nanotherm DM is a unique thin-film substrate that is a cost-effective replacement for ceramics such as aluminium nitride and is used for LED and semiconductor packaging.

Cambridge Nanotherm was set up in 2010 by an experienced team of managers with a strong track record for commercialising innovative IP, and is backed by Enso Ventures. For further information visit http://www.camnano.com/

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

The Future of Intelligent Devices is Here
Sponsored by Alif Semiconductor
In this episode of Chalk Talk, Amelia Dalton and Henrik Flodell from Alif Semiconductor explore the what, where, and how of Alif’s Ensemble 32-bit microcontrollers and fusion processors. They examine the autonomous intelligent power management, high on-chip integration and isolated security subsystem aspects of these 32-bit microcontrollers and fusion processors, the role that scalability plays in this processor family, and how you can utilize them for your next embedded design.
Aug 9, 2023
30,591 views