industry news
Subscribe Now

High Speed Isolated Calibrated Current Sensors Provide More Effective Alternative to Conventional Shunt Based Solutions

Tessenderlo, Belgium, 13th July 2016 – Melexis, a global microelectronics engineering company, has further expanded its comprehensive portfolio of current sensing devices, based on cutting-edge implementation of Hall effect technology, by announcing the MLX91210 family.

Running off a 5V supply, MLX91210 ICs have current sensitivity levels down to 26.7mV/A and support linear current measurement ranges that span as far as ±75A corresponding to 30ARMS current. Available in SO8 and SO16 package formats, these fully integrated Hall-effect current sensors have extremely low resistive losses (0.8m? for the SO8 and 0.7m? for the SO16) and provide high voltage isolation ratings (2.1kVRMS and 2.5kVRMS respectively), as well as accelerated responsiveness (within just 5us). The sensor output of each IC is factory-calibrated for a specific current range and compensated for optimal stability in relation to temperature and over the course of its working lifespan, so that long term accuracy is maintained.

With provision to be factory calibrated for zero-current output point and sensitivity, each of these devices produces a linear analog output that is proportional to the current flowing directly through the IC’s leadframe. Inside the IC package, the magnetic field generated by the current flow is sensed differentially by two sets of Hall plates. This set up combats the effect of external fields and crosstalk. The close proximity of the Hall plates with the current conductor results in superior signal integrity, but at the same time a strong insulation layer separates the primary and secondary sides. The devices exhibit strong robustness against external fields, something that will get ever more critical as the density of power electronics designs increases. The key differentiator though is the virtually non-existent magnetic hysteresis that is witnessed, which results from the design not needing a ferromagnetic concentrator. A -40°C to 125°C temperature range is supported, and the sensors comply with IEC-60950 (furthermore the SO16 packaged devices adhere to UL1577).

Thanks to their high speed and compact size, key applications for MLX91210 ICs that support both DC and AC current measurements, include precision current flow monitoring in power distribution units of server farms and data centers, power supplies and converters, demand response load control, household/appliance smart metering and energy intelligence, solar power converters and combiner boxes, and electrical motor control in general.

“There is greater impetus for compact current/power monitoring in both domestic and industrial environments, with new legislative measures being established for higher efficiencies as well as financial concerns due to escalating energy costs,” explains Bruno Boury, Product Line Manager for Magnetic Sensing at Melexis. “These new high speed devices are raising the bar in current sensor technology. Thanks to their compact form factors combining the sensing and isolation mechanism in a few tens of square millimeter footprint with very low ohmic losses, thermal drift compensation features and crosstalk immunity, they can be deployed into concentrated electronic systems and still deliver high degrees of accuracy.”   

About Melexis

Melexis designs, develops, tests and markets advanced integrated semiconductor products. Our devices meet the world’s growing demand for greener and safer cars that are fun to drive, smarter appliances and more conscious buildings. We supply unique sensor and driver chips, communicating with analog, digital, wired or wireless interfaces, enhanced with advanced on board microcontrollers or DSP capabilities. Our core experience is derived from over 25 years supplying leading-edge and innovative ICs to the automotive electronics market, expanding in other application fields such as smart appliances and building automation. Melexis is proud to partner with our customers to engineer the sustainable future. 

Melexis’ portfolio is built around three pillars: Sensing, Driving and Communicating. Sensors include magnetic, MEMs, and sensor interface ICs; optoelectronic single point and linear array sensors; infrared thermometers, CMOS wide dynamic range, Time of Flight and night vision cameras. Driver ICs cover Advanced DC & BLDC motor controllers and FET Pre-driver ICs. Communication ICs serve RKE, TPMS, ISM band applications, NFC, RFID reader and smart tag solutions. For more information, visit www.melexis.com

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Unlock the Productivity and Efficiency of a Connected Plant
In this episode of Chalk Talk, Amelia Dalton and Patrick Casey from Schneider Electric explore the multitude of benefits that mobility brings to industrial applications. They investigate how Schneider Electric’s Harmony Hub can simplify monitoring and testing, increase operational efficiency and connectivity openness in industrial plants, and how NFC technology can bring new innovation possibilities to IIoT applications.
Apr 23, 2024
421 views