industry news
Subscribe Now

Imec presents successors to FinFET for 7nm and beyond at upcoming VLSI Technology Symposium 2015

Leuven (Belgium)– June 17, 2015 – At this week’s VLSI 2015 Symposium in Kyoto (Japan), imec reported new results on nanowire FETs and quantum-well FinFETs towards post-FinFET multi-gate device solutions. 

As the major portion of the industry adopts FinFETs as the workhorse transistor for 16nm and 14nm, researchers worldwide are looking into the limits of FinFETs and potential device solutions for the 7nm node and beyond. Two approaches, namely Gate-All-Around Nanowire (GAA NW) FETs, which offer significantly better short-channel electrostatics, and quantum-well FinFETs (with SiGe, Ge, or III-V channels), which achieve high carrier mobility, are promising options.  

    For the first time, imec demonstrated the integration of these novel device architectures with state-of-the-art technology modules like Replacement-Metal-Gate High-k (RMG-HK) and Self (Spacer)-Aligned Double-Patterned (SADP) dense fin structures. By building upon today’s advanced FinFET technologies, the work shows how post-FinFET devices can emerge, highlighting both new opportunities as well as complexities to overcome.  

Imec and its technology research partners demonstrated SiGe-channel devices with RMG-HK integration. Besides SiGe FinFET, a unique GAA SiGe nanowire channel formation during the gate replacement process has been demonstrated. The novel CMOS-compatible process converts fin channels to nanowires by sacrificial Si removal during the transistor gate formation. The process may even enable future heterogeneous co-integration of fins and nanowires, as well as Si and SiGe channels. The work also demonstrates that such devices and their unique processing can lead to a drastic 2x or more improvement in reliability (NBTI) with respect to Si FinFETs. 

Moreover, imec demonstrated Si GAA-NW FETs based on SOI with RMG-HK. The work compares junction-based and junction-less approaches and the role of gate work function for multi-Vt implementations. New insights into the improved reliability (PBTI) with junction-less nanowire devices have been gained.

    Extending the heterogeneous channel integration beyond Si and SiGe, imec demonstrated for the first time strained Ge QW FinFETs by a novel Si-fin replacement fin technique integrated with SADP process. Our results show that combining a disruptive approach like fin replacement with advanced modules like SADF-fin, RMG-HK, direct-contacts can enable superior QW FinFETs. The devices set the record for published strained Ge pMOS devices, outperforming by at least 40% in drive current at matched off-currents.

Imec’s research into advanced logic scaling is performed in cooperation with imec’s key partners in its core CMOS programs including GLOBALFOUNDRIES, INTEL, Micron, Panasonic, Samsung, SK hynix, Sony and TSMC.

This press release can be downloaded at http://www2.imec.be/be_en/press/imec-news/imec-VLSI2015-Germanium-multigate GAANW-finFET.html 

About imec

Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in the Netherlands, Taiwan, USA, China, India and Japan. Its staff of about 2,200 people includes almost 700 industrial residents and guest researchers. In 2014, imec’s revenue (P&L) totaled 363 million euro. Further information on imec can be found at www.imec.be. Stay up to date about what’s happening at imec with the monthly imec magazine, available for tablets and smartphones (as an app for iOS and Android), or via the website www.imec.be/imecmagazine 
Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.)and imec China (IMEC Microelectronics (Shanghai) Co. Ltd.) and imec India (Imec India Private Limited).

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
11,305 views