industry news
Subscribe Now

Cortus Launches Optimized Low-Power Processor for Multi-Core Implementations in Connected Devices

Montpellier, France, 7th October 2014 –  Cortus, a technology leader in low power, silicon efficient, 32-bit processor IP, today announced the release of the APS25 processor IP core, the second in a family of products based on the new Cortus v2 instruction set (see news release on APS23). The APS25 core is aimed at embedded systems demanding greater computational performance and system complexity while also requiring maximum code density and extendibility.

“The Internet of Things is ushering in a huge transition for embedded processors where power, security and code size are critical,” said Loyd Case, Senior Analyst of The Linley Group. “We see a whole new set of requirements emerging for processor IP, especially when it comes to managing power and silicon area. The new Cortus cores and architecture do a good job of balancing between the complexity of the processor core and the size of the instruction memory, making them well suited for a broad range of industrial and consumer applications.”

Cortus licenses a range of low power 32-bit processor cores for intelligent connected devices. With growing embedded system complexity, APS25 has been designed to support accelerating computation through using coprocessors or symmetric multiprocessing. The core is also designed to be a building block in the growing number of dual-, or multi-core systems.

The APS25 has a Harvard architecture, sixteen 32-bit registers, a 5-stage pipeline, and a parallel multiplier. It supports the AXI4 bus as well as Cortus APS peripherals.

Up to eight co-processors can be added to an APS25 core. The Cortus coprocessor interface allows licensees to add custom coprocessors, for example to accelerate computations in cryptography or signal processing, without knowing details of the internals of the core. Co-processor instructions can be inserted into C-code appearing as function calls.

The small size of APS25 makes it highly suitable for applications requiring two cores. For example a common approach in functional safety is for two cores to execute the same code in lock step and to trigger an alarm if the results do not match. Another application is secure execution where it is desirable to physically separate the execution of secure software by running it on a supervisory CPU while application code runs on another CPU core.

The Cortus v2 instruction set allows the seamless mixing of 16-, 24- and 32-bit instructions without mode switching. This instruction set is richer than the v1 instruction set which used a mix of 16- and 32-bit instructions. Cortus will continue to offer products based on the v1 instruction set (e.g. APS5) in parallel with the new cores based on the v2 instruction set. All C/C++ or assembler code developed for the v1 cores can be used unmodified on the v2 cores.

“Embedded systems are demanding greater computational performance at lower price points than ever before,” said Mr. Michael Chapman, CEO and President of Cortus. “The universe of wirelessly connected devices is growing rapidly, creating a new and massive market opportunity. Just as mobile computing transformed the desktop, we now are now in the midst of another transformation. The Internet of Things, smart sensors and ubiquitous connectivity require a new type of processing platform, one which the Cortus cores are optimized for and is already in place.”

All cores interface to Cortus’ peripherals including Ethernet 10/100 MAC, USB 2.0 Device and USB 2.0 OTG via the efficient APS bus. They also share the simple vectored interrupt structure which ensures rapid, real time interrupt response, with low software overhead.

The APS tool chain and IDE (for C and C++) is available to licensees free of charge, and can be customised and branded for final customer use. Ports of various RTOSs are available such as FreeRTOS, Micrium ?C/OSII.

To date well over 700 million devices have been manufactured containing Cortus processor cores.

About Cortus S.A.S.:

Cortus S.A.S. is a technology enabler for rapidly growing applications including Internet of Things (IoT), wearable electronic devices, smart sensors and security. It has specialised in 32-bit processor cores which can significantly reduce manufacturing costs while achieving computational performance and power constraints. Integrated circuits containing Cortus cores have been manufactured in high volumes for a wide range of applications including automotive, CMOS imaging, M2M controllers, secure execution, sensors, SIM cards, PayTV cards, smart metering and wireless. Cortus’ headquarters are in Montpellier, France.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Maximizing High Power Density and Efficiency in EV-Charging Applications
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Amelia Dalton and Daniel Dalpiaz from Infineon talk about trends in the greater electrical vehicle charging landscape, typical block diagram components, and tradeoffs between discrete devices versus power modules. They also discuss choices between IGBT’s and Silicon Carbide, the advantages of advanced packaging techniques in both power discrete and power module solutions, and how reliability is increasingly important due to demands for more charging cycles per day.
Dec 18, 2023
17,666 views