industry news
Subscribe Now

AT&S, Soundchip, and STMicroelectronics Craft Innovative Bionic Ear

Leoben, Austria and Genève, Switzerland, 16 September 2014 – AT&S, a leader in advanced packaging solutions, Soundchip SA, a Swiss-based innovator in wearable sound technology, and STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, today announced their collaboration in innovating a bionic hearing module that, when installed into a personal audio device, delivers an amazing wearable sound experience controlled at the ear by the wearer and software intelligence.

Personal audio devices, like an MP3 player or smartphone, equipped with the bionic hearing module, provide wearers with the ability to electronically “open” and “close” their ears to ambient sound conditions, or even to augment ambient sound with programmed audio from a connected smart device. This capability can fully protect wearers from noise in situations where the ambient sound is too loud, or to open the ear for natural conversation with others, without having to remove the audio device, suffer from the discomfort of occlusion, or worse, the pain of loud noise.

The bionic hearing module integrates a broad spectrum of advanced electronics to further enhance the on-the-go audio experience, including head-tracking and other sensing, to enable exciting new features, including augmented-audio guidance and biometric monitoring.

The multi-mode audio capabilities of the bionic hearing module are enabled through the use of HD-PA® technology developed by Soundchip. Their implementation in a compact form factor is made possible through the use of patented Soundstrate® technology, which enables the efficient combination of electronic, acoustic, and transmission means within a single, compact mechanical structure.

The semiconductor components in the bionic hearing module comprise the latest Motion and Audio MEMS (Micro-Electro-Mechanical System) components from STMicroelectronics, an HD-PA®-compliant Audio Engine for zero-latency sound processing, and an ultra-low-power STM32 MCU from ST’s industry-leading portfolio of more than 500 32-bit ARM® Cortex®-M-core microcontrollers.

The bionic hearing module’s packaging employs the latest in ECP® (Embedded Component Packaging) and 2.5D® PCB (Printed Circuit Board) technology from AT&S, which is capable of integrating acoustic, electroacoustic, passive and active electronic components with unmatched efficiency, providing module dimensions ideally suited to the comfort and size constraints of in-ear operation, and compatible with most existing in-ear-type personal audio devices.

“For the past four years, Soundchip has been leading the parade for smart wearable sound to market-leading companies in the consumer, mobile and aviation markets. We have been thrilled by their response and now see that consumers are ready to experience a new wave of smart, software-enabled wearable sound devices,” said Mark Donaldson, CEO of Soundchip.

“Enabling bionic hearing demands the interconnection of robust and reliable high-performance silicon components within a complex structure—that must be comfortable to wear. By combining our leading MEMS and micro-processing devices with complementary solutions from Soundchip and AT&S, we have the right combination of technology and know-how to deliver this ground-breaking solution,” said Andrea Onetti, Volume MEMS & Analog Division General Manager, STMicroelectronics.

“Very-small form-factor devices—especially those that will be worn in ear–demand highly integrated designs and packaging technologies at the leading edge. AT&S, as the foremost supplier of ECP® and 2.5D® packaging solutions, is strongly positioned to enable the bionic ear, and we are thrilled to be joining Soundchip and STMicroelectronics in bringing this exciting technology to market,” said Michael Tschandl,VP Sales Advanced Packaging, AT&S.

The bionic hearing module is expected to be available for customer sampling by the second quarter of 2015.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Battery-free IoT devices: Enabled by Infineon’s NFC Energy-Harvesting
Sponsored by Mouser Electronics and Infineon
Energy harvesting has become more popular than ever before for a wide range of IoT devices. In this episode of Chalk Talk, Amelia Dalton chats with Stathis Zafiriadis from Infineon about the details of Infineon’s NFC energy harvesting technology and how you can get started using this technology in your next IoT design. They discuss the connectivity and sensing capabilities of Infineon’s NAC1080 and NGC1081 NFC actuation controllers and the applications that would be a great fit for these innovative solutions.
Aug 17, 2023
30,089 views