industry news
Subscribe Now

Detecting early-stage malarial infection – New prototype device recognizes electrical properties of infected cells as signatures of disease

(CAMBRIDGE, MA) — Researchers at MIT have found a way to detect early-stage malarial infection of blood cells by measuring changes in the infected cells’ electrical properties.

The scientists, from the laboratories of MIT’s Anantha Chandrakasan and Subra Suresh — who is now president of Carnegie Mellon University — have built an experimental microfluidic device that takes a drop of blood and streams it across an electrode that measures a signal differentiating infected cells from uninfected cells. The work, published Aug. 8 in the journal Lab on a Chip, is a first step toward a field-ready, low-cost, portable malaria-detection device.

“Ultimately the goal would be to create a postage stamp-sized device with integrated electronics that can detect if a person has malaria and at what stage,” says Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering and a principal investigator at MIT’s Microsystems Technology Laboratories (MTL), who specializes in developing low-power electronic devices. Similar diagnostics may be applicable to other infections and diseases.

Sorting out the signals

When the malaria parasite Plasmodium falciparum infects a red blood cell, the cell becomes more magnetic and more rigid, properties that can be detected in a rapid-diagnostic device. But these changes are hard to detect before the parasite matures beyond the ring stage — its earliest stage, and the only stage found in circulating blood. At later stages of infection, the infected red blood cells adhere to small capillaries, blocking circulation and causing various symptoms, and even death in severe cases.

So the researchers decided to look into using electrical impedance as a diagnostic signal. Several types of infection, including malaria, alter a cell’s impedance, a measure of electrical resistance across the cell membrane. Studies had already measured electrical changes in later-stage infected cells, but it wasn’t clear that cells that had reached only the ring stage of infection would exhibit electrical changes.

To find out, first authors Sungjae Ha, a graduate student in the Chandrakasan lab, and Sarah Du, a postdoc in the Suresh lab (also known as the Nanomechanics Laboratory), built a microfluidic device capable of measuring the magnitude and phase of the electrical impedance of individual cells. The device is essentially a cell-counting device, similar in approach to other low-cost, portable devices being developed to diagnose illnesses such as HIV.

The challenge, however, involved optimizing the electronics to allow very accurate measurements of impedance for each cell as it passes by. The researchers had to minimize interfering electric signals from the substrate the blood flows over and prevent the cells from sticking to one another.

In tests of cells of four cell types — uninfected cells and infected cells at the ring, trophozoite and schizont stages — the device detected small differences in measures of magnitude and seemingly random differences in phase, but not quite enough to definitively differentiate among stages.

However, by mathematically combining the measures into an index called delta, the differences between uninfected cells and all three stages became clear. “It’s much more significant,” says corresponding author Ming Dao, a principal research scientist in the Nanomechanics Laboratory. “It’s a more holistic approach. By using all of the information we can measure, we can detect the differentiating signals much more clearly.”

“What’s really cool about this device is that it can actually differentiate between uninfected red blood cells and circulating ring infected red blood cells even though the parasite is still very small at this stage and the host cells have hardly been modified,” says Matthias Marti, an assistant professor of immunology and infectious diseases at the Harvard School of Public Health, who did not participate in the study.

Solving real-world problems

Malaria is a curable disease, but diagnosis remains a challenge. This ability to discern the circulating parasite’s stage from a drop of blood opens the possibility of building a device that could be used to rapidly diagnose malarial infection in places where laboratories and skilled medical personnel are scarce.

Traditionally, technicians detect malarial infection visually, by observing blood smears through a microscope. More recently, the World Health Organization has supported the use of rapid diagnostic tests that detect an antigen to the parasite in the blood. These tests provide results in about 15 minutes and do not require skilled technicians, so sick people can be diagnosed and treated on the spot.

But neither of these approaches is very sensitive, Marti says. “For a new device to be meaningful in the field, it would have to be more sensitive than these traditional approaches, as well as cheap and quick.”

The collaborative MIT team of experts in microfluidics, circuit design, materials science and microbiology has designed their new cell-differentiating technology so that it can be packaged as a low-cost device, but more work needs to be done. “We are using our combined expertise to push the technology toward real-world applications,” Dao says.

Since this new detection method can, for the first time, differentiate among the three major stages of Plasmodium falciparum’s asexual development, Marti sees another potential application: The device may also be able to distinguish cells infected with the parasite at its transmission stage, the stage in which mosquitos can pick it up from humans and transmit it to other humans. “If we could use the device to detect malaria infection and the potential for transmission at the same time, that would make it even more interesting,” Marti says.

The next steps for further development involve integrating this new technology into a small, low-cost package. “Our hope is that such technologies as those described in this work will ultimately help meet the need for a new generation of portable, disposable and inexpensive diagnostics for a variety of human diseases,” Suresh says.

The team is also interested in using the device to investigate the electrical properties of other types of diseased cells to see if electrical impedance changes could be used for diagnostics.

This work was carried out with the assistance of the Fulbright Science and Technology Award. Device fabrications were carried out at MTL. The work was supported by Singapore’s National Research Foundation through the Singapore-MIT Alliance for Research and Technology (SMART) and by SMART, MIT’s Center for Integrated Circuits and Systems and the National Institutes of Health (Grant R01 HL094270).

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Introduction to the i.MX 93 Applications Processor Family
Robust security, insured product longevity, and low power consumption are critical design considerations of edge computing applications. In this episode of Chalk Talk, Amelia Dalton chats with Srikanth Jagannathan from NXP about the benefits of the i.MX 93 application processor family from NXP can bring to your next edge computing application. They investigate the details of the edgelock secure enclave, the energy flex architecture and arm Cortex-A55 core of this solution, and how they can help you launch your next edge computing design.
Oct 23, 2023
24,241 views