industry news
Subscribe Now

Imec First to Demonstrate Nanophotonics Components on 300mm Silicon Photonics Wafers Using Optical Lithography

SEMICON WEST (San Francisco, USA) – July 9, 2012 – Imec today announces the world-first realization of functional sub-100nm photonics components with optical lithography on 300mm silicon photonics wafer technology. Using 193nm immersion lithography, imec achieved the lowest propagation loss ever reported in silicon wire waveguides, and succeeded in patterning simpler and more efficient fiber couplers. Imec’s achievement is an important step in bringing Si photonics technology in line with CMOS industry standards.

Imec’s industrial affiliation program on optical I/O explores the use of photonics solutions for realizing high-bandwidth I/O in high performance computing systems. The program is developing Si photonics processes, devices and circuits using state-of-the-art CMOS fabrication processes. Until now, many nanophotonics components have only been demonstrated using lab-scale techniques such as e-beam lithography. Imec succeeded to demonstrate functional Si nanophotonics devices on industry-compatible 300mm wafers using 193nm immersion lithography and 28nm CMOS processes. This achievement is crucial in bringing Si photonics technology to CMOS industry adoption.

The optical waveguides on 300mm wafers have a very low propagation loss well below 1dB/cm. Moreover, imec patterned sub-wavelength features and demonstrated optical fiber-chip couplers using 193nm immersion lithography. By applying 193nm immersion lithography for patterning waveguides as well as fiber couplers, imec eliminated one patterning step in the processing of photonics devices. This resulted in a significant reduction of the processing cost. By demonstrating low phase errors on 450nm arrayed waveguide gratings, imec’s patterning platform using 45nm mask technology and 193nm immersion lithography has proved it can yield a very uniform waveguide width within a device.

“Imec’s results are an important step in bringing Si photonics technology in line with CMOS industry standards,” said Philippe Absil, Director of the optical I/O program at imec. “Our achievement with 193nm immersion lithography and 28nm CMOS processes on 300mm wafers is an important step in Si photonics development to demonstrate the manufacturability of highly integrated components. Possible applications are next-generation short-reach interconnects, which we expect to go into manufacturing by 2015.”

These results were obtained in cooperation with INTEC, imec’s associated lab at the Ghent University, and with imec’s key partners in its core CMOS programs Globalfoundries, INTEL, Micron, Panasonic, Samsung, TSMC, Elpida, SK Hynix, Fujitsu, Toshiba/Sandisk, and Sony.

Left (top) Deeply etched sub-wavelength photonic crystal fiber-chip coupler and (bottom) its coupling efficiency in comparison to standard ine/space grating based fiber-chip couplers, right (top) Photonic wire direction couplers with 100 nm coupling gap and (bottom) propagation loss of photonic wire.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Optimize Performance: RF Solutions from PCB to Antenna
Sponsored by Mouser Electronics and Amphenol
RF is a ubiquitous design element found in a large variety of electronic designs today. In this episode of Chalk Talk, Amelia Dalton and Rahul Rajan from Amphenol RF discuss how you can optimize your RF performance through each step of the signal chain. They examine how you can utilize Amphenol’s RF wide range of connectors including solutions for PCBs, board to board RF connectivity, board to panel and more!
May 25, 2023
37,757 views