fresh bytes
Subscribe Now

How to become an expert tightrope walker

Samuel_Dixon_Niagara.jpg

Life is a constant balancing act, especially if you’re a tightrope walker. The best athletes make treading a circus high wire or a low-hanging slackline look effortless, but they’re actually juggling complex challenges of perception and motor control. Now researchers have constructed a mathematical explanation of how such nimble acrobats remain upright. Their calculations point to a theoretical “sweet spot,” or optimal conditions for a person to balance on a line with minimal effort. Such a model may help scientists better understand how the brain and body work together to pull off difficult tasks.

The study originated from a thought experiment, as researchers at Harvard University pondered the ultimate balancing challenge. Keeping steady on a stationary plank or beam is hard enough, but a rope adds the destabilizing element of motion. A rope not only sways but also moves in response to a person’s movement, forcing the walker to constantly change position. In this shaky feedback loop, “small errors can be amplified very easily,” says study author L. Mahadevan, an applied mathematician and scientist.

The researchers created a simple model of a person on a rope with forces, masses, angles, and velocities to describe how the rope and person respond to each other. They also considered the sensory systems that alert us when our bodies start to teeter, including our eyes, the organs of our inner ear, and orientation information from our ankles and knees. In their calculations, they suggest that rapid information about falling provided by the inner ear is sufficient to help a rope walker maintain his or her balance.
via sciencemag.org

Continue reading 

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Portenta C33
Sponsored by Mouser Electronics and Arduino and Renesas
In this episode of Chalk Talk, Marta Barbero from Arduino, Robert Nolf from Renesas, and Amelia Dalton explore how the Portenta C33 module can help you develop cost-effective, real-time applications. They also examine how the Arduino ecosystem supports innovation throughout the development lifecycle and the benefits that the RA6M5 microcontroller from Renesas brings to this solution.  
Nov 8, 2023
22,499 views