industry news
Subscribe Now

IR HiRel marks milestone with NASA’s Mars Perseverance rover

Munich, Germany, and El Segundo, California – 29 July 2020 – On Thursday this week, NASA Jet Propulsion Laboratory is planning to send the Rover Perseverance on a journey to Mars. The launch is scheduled for 7:50 AM Eastern Daylight Time, with the landing on the Red Planet targeted for February 2021. IR HiRel, an Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) company, supplied thousands of mission-critical radiation-hardened (rad hard) components for the rover. This marks the company’s fifth time with power electronics aboard a NASA Mars rover, with heritage in these missions starting with Sojourner in 1997, Opportunity and Spirit in 2004, and Curiosity in 2012.

“IR HiRel has been privileged to supply high-reliability power conversion solutions in space programs over the decades,” said Eric Toulouse, Vice-President and General Manager of IR HiRel. “The Mars Perseverance launch marks another important milestone in space exploration, and we are honored to have our semiconductor technologies used to power up this spacecraft.”

Several rover subsystems, such as the flight computer, motor control, radar, and mission instrument suite, integrate IR HiRel space-grade MOSFETs, ICs and other power control products that ensure reliable operation in the harsh space environment.

Perseverance carries a groundbreaking scientific instrument suite designed to test new technology and conduct advanced research in the harsh Martian environment. All this for seeking signs of habitable conditions and microbial life in the ancient past. Specific rover instruments that contain IR HiRel semiconductors include:

  • Mastcam-Z, a mast-mounted HD imaging camera system with panoramic, stereoscopic and zoom capabilities
  • SuperCam, featuring a camera, laser and spectrometers searching for organic compounds potentially related to past life on Mars
  • Planetary Instrument for X-ray Lithochemistry (PIXL), looking for signs of past Martian microbial life
  • Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC), a UV spectrometer for fine-scale detection of minerals, organic molecules and possible biosignatures
  • Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE), designed to produce oxygen from the planet’s atmospheric carbon dioxide

Infineon and IR HiRel offer a unique portfolio high-reliability, rad hard power conversion and RF solutions for space and other rugged environments. Flight-proven HiRel products are used throughout spacecraft electrical systems. More information is available at www.infineon.com/space.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Maximizing High Power Density and Efficiency in EV-Charging Applications
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Amelia Dalton and Daniel Dalpiaz from Infineon talk about trends in the greater electrical vehicle charging landscape, typical block diagram components, and tradeoffs between discrete devices versus power modules. They also discuss choices between IGBT’s and Silicon Carbide, the advantages of advanced packaging techniques in both power discrete and power module solutions, and how reliability is increasingly important due to demands for more charging cycles per day.
Dec 18, 2023
18,555 views