industry news
Subscribe Now

Microchip’s Low-Power Radiation-Tolerant (RT) PolarFire® FPGA is Available in Engineering Silicon and On a Path to Full QML Class V Spaceflight Qualification

Customers can prototype with the same FPGA silicon and package that is now headed for space qualification

CHANDLER, Ariz., Dec. 2, 2020 – Microchip Technology (Nasdaq: MCHP) today announced it is shipping engineering silicon for its RT PolarFire Field Programmable Gate Array (FPGA) while the device is being qualified to spaceflight component reliability standards. Designers can now create hardware prototypes with all the same electrical and mechanical performance that the space-qualified RT PolarFire FPGAs will provide for high-bandwidth on-orbit processing systems with industry-low power consumption and the ability to withstand radiation effects in space.

“This is a major milestone as we release RT PolarFire FPGA engineering silicon to our customers and begin the spaceflight qualification process through full QML Class V standards,” said Bruce Weyer, vice president of Microchip’s FPGA business unit. “Many of our customers have already jump-started satellite system payload development using our commercial PolarFire MPF500T FPGAs and now all prototyping can be done with silicon that will be identical in form, fit and function to our eventual flight-qualified RT PolarFire FPGAs.”

Microchip is qualifying its RT PolarFire RTPF500T FPGAs to Mil Std 883 Class B, QML Class Q and QML Class V — the highest qualification and screening standard for monolithic integrated circuits in space. Designed to survive a rocket launch and meet demanding performance needs in space, RT PolarFire FPGAs are ideal for applications including high-resolution passive and active imaging, precision remote scientific measurement, multi-spectral and hyper-spectral imaging, and object detection and recognition using neural networks. These applications require high levels of operating performance and density, low heat dissipation, low power consumption and low system-level costs.

About the RT PolarFire FPGA

Microchip’s RT PolarFire FPGAs increase computational performance so satellite payloads can transmit processed information rather than raw data and make optimal use of limited downlink bandwidth. The devices exceed the performance, logic density and serializer-deserializer (SERDES) bandwidth of any other currently available space-qualified FPGA. They also enable more system complexity than previous FPGAs and withstand Total Ionizing Dose (TID) exposure beyond the 100 kilorads (kRads) typical of most earth-orbiting satellites and many deep-space missions. Their power-efficient architecture reduces power consumption up to 50 percent compared to SRAM FPGAs, leveraging SONOS configuration switches that also eliminate the problem of configuration upsets due to radiation in space.

Availability

The RT PolarFire RTPF500T FPGA engineering models are available in a hermetically sealed ceramic package with land grid, solder ball and solder column termination options. They are supported by development boards, Microchip’s Libero® software tool suite and radiation data. Additional information is available here.

Please let us know if you would like to speak to a subject matter expert on Microchip’s RT PolarFire FPGAs and the challenges of high-performance computing in space.

About Microchip Technology

Microchip Technology Inc. is a leading provider of smart, connected and secure embedded control solutions. Its easy-to-use development tools and comprehensive product portfolio enable customers to create optimal designs which reduce risk while lowering total system cost and time to market. The company’s solutions serve more than 120,000 customers across the industrial, automotive, consumer, aerospace and defense, communications and computing markets. Headquartered in Chandler, Arizona, Microchip offers outstanding technical support along with dependable delivery and quality. For more information, visit the Microchip website at www.microchip.com.

Leave a Reply

featured blogs
Mar 28, 2024
'Move fast and break things,' a motto coined by Mark Zuckerberg, captures the ethos of Silicon Valley where creative disruption remakes the world through the invention of new technologies. From social media to autonomous cars, to generative AI, the disruptions have reverberat...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

Switch to Simple with Klippon Relay
In this episode of Chalk Talk, Amelia Dalton and Lars Hohmeier from Weidmüller explore the what, where, and how of Weidmüller's extensive portfolio of Klippon relays. They investigate the pros and cons of mechanical relays, the benefits that the Klippon universal range of relays brings to the table, and how Weidmüller's digital selection guide can help you choose the best relay solution for your next design.
Sep 26, 2023
23,680 views