industry news
Subscribe Now

Imec first to demonstrate conductor films on 300mm wafers with lower resistivity than Cu and Ru

The results motivate the continued search for binary and ternary alloys to replace Cu and Ru in advanced interconnect metallization schemes

LEUVEN (Belgium), MAY 23, 2023— This week, at the 2023 IEEE International Interconnect Technology Conference (2023 IEEE IITC), imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, provides the first experimental evidence that the resistivity of a thin conductor film on a 300mm Si wafer can be lower than that of Cu and Ru, which are currently used in interconnect metallization schemes. For example, a resistivity as low as 11.5µWcm was measured for a NiAl binary alloy of 7.7nm thickness, obtained after grain size engineering. The results mark a milestone towards enabling low-resistive interconnect with line widths below 10nm.

To keep pace with the continuing device scaling, the width of the most critical interconnect lines in state-of-the-art logic and memory chips soon approaches 10nm. At these small dimensions, the resistivity of Cu increases dramatically, and its reliability degrades. This has forced the interconnect community to identify alternatives to Cu metallization. While the focus was initially on elemental metals, the search has been extended to binary and ternary ordered intermetallics – initiated by imec at the 2018 IITC conference.

Imec set up a unique ab-initio-based methodology to select and rank the most promising materials, using the product of the bulk resistivity and the mean free path of the charge carriers (r0 x l) as one of the main figures of merit. This theoretical assessment was the starting point for further experimental work on 300mm wafers. Zsolt Tőkei, fellow and program director of nano-interconnects at imec: “To better understand and model the resistivity behavior of the selected binary alloys at small dimensions, we introduce at the 2023 IEEE IITC conference an effective resistivity, which considers composition variation and the effects of order and disorder. Further analysis revealed that the resistivity of thin films of binary alloys is dominated by grain boundary scattering due to the small grain sizes inherently present in thin conductor films, whereas disorder contributes for thicker films as well.”

For the case study of stoichiometric NiAl, a resistivity as low as 11.5µWcm was measured on a 7.7nm thin film, which is 23% lower than Cu. This was achieved after depositing a 50nm thick large-grain NiAl film on a Ge epi-layer at back-end-of-line (BEOL) compatible temperatures, followed by thinning experiments. These experiments preserve a larger grain size (45.7nm) and hence reduce the contribution of grain boundary scattering to resistivity. Zsolt Tőkei: “The experimental existence of low-resistive thin conductor films on 300mm wafers motivates us to continue our search for binary and ternary alloys. At the same time, we investigate the composition control of the alloys and their integration compatibility with future metallization schemes that will likely be based on subtractive etch.”

At 2023 IEEE IITC, imec has 10 oral presentations addressing the main challenges in interconnect scaling. Besides two papers on alternative metals exploration – including one invited contribution – the papers highlight work on semi-damascene metallization, reliability, thermal impact of advanced interconnect stacks, middle-of-line metallization schemes, and more.

(Left) Resistivity of NiAl binary alloy deposited at various process conditions and benchmarked against Cu and PVD Ru. Lowest resistivity at 7.7nm film thickness is obtained for an epi binary alloy, deposited at 50nm thickness and followed by thinning (represented by the red stars). (Right) TEM pictures of 7.7nm binary films (a) as-deposited at 420°C, with 13.8nm grain size; (b) after thinning a 50nm film, achieving 45.7nm grain size.     

About imec

Imec is a world-leading research and innovation center in nanoelectronics and digital technologies. Imec leverages its state-of-the-art R&D infrastructure and its team of more than 5,500 employees and top researchers, for R&D in advanced semiconductor and system scaling, silicon photonics, artificial intelligence, beyond 5G communications and sensing technologies, and in application domains such as health and life sciences, mobility, industry 4.0, agrofood, smart cities, sustainable energy, education, … Imec unites world-industry leaders across the semiconductor value chain, Flanders-based and international tech, pharma, medical and ICT companies, start-ups, and academia and knowledge centers. Imec is headquartered in Leuven (Belgium), and has research sites across Belgium, in the Netherlands and the USA, and representation in 3 continents. In 2022, imec’s revenue (P&L) totaled 846 million euro.

Further information on imec can be found at www.imec-int.com.

Leave a Reply

featured blogs
Dec 8, 2025
If you're yearning for a project that reconnects you with the roots of our digital age, grab a soldering iron and prepare to party like it's 1979!...

featured news

Need Faster VNX+ Development? Elma Just Built the First Lab Platform for It

Sponsored by Elma Electronic

Struggling to evaluate VNX+ modules or build early prototypes? Elma Electronic’s new 3-slot FlexVNX+ dev chassis streamlines bring-up, testing, and system integration for VNX+ payload cards—SOSA-aligned, lab-ready, and built for fast time-to-market.

Click here to read more

featured chalk talk

Time to first prototype shouldn’t be so hard!
In this episode of Chalk Talk, Romain Petit from Siemens and Amelia Dalton examine the challenges of FPGA-based prototyping and how the automatic partitioning, automatic cabling, runtime and debug infrastructure and more of the Siemens VPS platform can make your next FPGA-based prototype project easier than ever before.
Dec 3, 2025
19,279 views