industry news
Subscribe Now

A 5G-Enabled AI-Based Malware Classification System for the Next Generation of Cybersecurity

Researchers develop a 5G-enabled deep learning approach for classifying malware attacks on the Industrial Internet of Things
Industrial Internet of Things (IIoT) helps streamline processes by creating communication networks between different components of an industry. However, these IIoT systems are also prone to security threats which need to be addressed to ensure a safe Industry 4.0 revolution. Researchers from INU developed an AI-based convolutional neural network architecture that can classify malware attacks in 5G-enabled IIoT systems.
 
The Industrial Internet of Things, or IIoT, has recently gained popularity due to its ability to create communication networks between different components of an industry and bring about the new revolution—Industry 4.0. Powered by wireless 5G connectivity and artificial intelligence (AI), IIoT holds the ability to analyze critical problems and provide solutions that can improve the operational performance of industries ranging from manufacturing to healthcare.
IoT is highly user-centric—it connects TVs, voice assistants, refrigerators, etc.—whereas IIoT deals with enhancing the health, safety, or efficiency of larger systems, bridging hardware with software, and carrying out data analysis to provide real-time insights.
However, while IIoT does have many advantages, it also comes with its share of vulnerabilities such as security threats in the form of attacks trying to disturb the network or siphoning resources. As IIoT is getting more popular in industries, it is becoming crucial to develop an efficient system to handle such security concerns. So, a team of multinational researchers led by Prof. Gwanggil Jeon from Incheon National University stepped up to the challenge!
They took a deep dive into the world of 5G-enabled IIoT to explore its threats and come up with a novel solution to the problem. In a recent review published online on 9 September 2022 in IEEE Transactions on Industrial Informaticsthe team presented an AI- and deep learning-based malware detection system for 5G-assisted IIoT systems. Prof. Jeon explains the rationale behind the study: “Security threats can often lead to operation or deployment failure in IIoT systems, which can create high-risk situations. So, we decided to investigate and compare available research, find out the gaps, and propose a new design for a security system that can not only detect malware attacks in IIoT systems, but also classify them.
The system developed by the team uses a method called grayscale image visualization with a deep learning network for analyzing the malware, and further applies a multi-level convolutional neural network (CNN) architecture to categorize the malware attack into different types. The team also integrated this security system with 5G, which allows for low latency and high throughput sharing of real-time data and diagnostics.
Compared to conventional system architectures, the new design showed an improved accuracy that reached 97% on the benchmark dataset. They also discovered that the reason behind such high accuracy is the system’s ability to extract complementary discriminative features by combining multiple layers of information.
This new malware classification system can be used to secure real-time connectivity applications such as smart cities and autonomous vehicles. It also provides solid groundwork for the development of advanced security systems that can curb a wide range of cybercrime activities. “AI-based technology has dramatically changed our lives. Our system harnesses the power of AI to enable industries to recognize miscreants and prevent the entry of unreliable devices and systems in their IIoT networks,” concludes Prof Jeon. Here’s to a more secure future, thanks to the work being done at INU!
Reference
DOI: 10.1109/TII.2022.3205366
Title of original paper: A Multi-layer Deep Learning Approach for Malware Classification in 5G-Enabled IIoT
Journal: IEEE Transactions on Industrial Informatics
About Incheon National University
Incheon National University (INU) is a comprehensive, student-focused university. It was founded in 1979 and given university status in 1988. One of the largest universities in South Korea, it houses nearly 14,000 students and 500 faculty members. In 2010, INU merged with Incheon City College to expand capacity and open more curricula. With its commitment to academic excellence and an unrelenting devotion to innovative research, INU offers its students real-world internship experiences. INU not only focuses on studying and learning but also strives to provide a supportive environment for students to follow their passion, grow, and, as their slogan says, be INspired.
 
About Professor Gwanggil Jeon, Incheon National University
Gwanggil Jeon received a Ph.D. degree from Hanyang University in 2008. After that, he became a postdoctoral researcher at the University of Ottawa, and then an Assistant Professor at Niigata University. He has served as a visiting or adjunct professor at École Normale Supérieure Paris-Saclay, Università degli Studi di Milano Statale. He is currently a Full Professor at Incheon National University. Dr. Jeon is an IEEE Senior Member and has received numerous awards, including the IEEE Chester Sall Award in 2007, the ETRI Journal Paper Award in 2008, and the Industry-Academic Merit Award by the Ministry of SMEs and Startups of Korea in 2020.

Leave a Reply

featured blogs
Dec 22, 2025
Here's a seasonal sampler of intriguing videos, curious technologies, surprising history, and random delights collected during a rare pause for breath....

featured video

Revolutionizing AI Chip Development: Synopsys Solutions for the Future

Sponsored by Synopsys

In the AI era, demand for advanced chips is soaring, creating scaling and power challenges. Discover how Synopsys accelerates AI chip development with innovative solutions, robust partnerships, and cutting-edge silicon IP for first-pass silicon success.

Click here for more information

featured news

Need Faster VNX+ Development? Elma Just Built the First Lab Platform for It

Sponsored by Elma Electronic

Struggling to evaluate VNX+ modules or build early prototypes? Elma Electronic’s new 3-slot FlexVNX+ dev chassis streamlines bring-up, testing, and system integration for VNX+ payload cards—SOSA-aligned, lab-ready, and built for fast time-to-market.

Click here to read more

featured chalk talk

High-Speed FAKRA-Mini Interconnect System
Sponsored by Mouser Electronics and Molex
In this episode of Chalk Talk, Kirk Ulery from Molex and Amelia Dalton explore the trends driving a need for external and internal data connections in automotive applications. They also investigate the benefits of the FAKRA Mini interconnect system and why the new locking and shielding mechanisms make this system rugged enough for the harshest automotive environments.
Dec 22, 2025
35,801 views