fresh bytes
Subscribe Now

Rubik’s robot solves puzzle in 0.38 seconds

A robot that can solve a Rubik’s cube puzzle in 0.38 seconds has been developed by two researchers in the US.

The current world record is 0.637 seconds, which was set by German engineer Albert Beer and his robot Sub1 Reloaded.

The researchers realised they could solve the cube more quickly by using a different type of motor in their robot.

They suggested the contraption could be tweaked to go faster but said they had “lost interest” in tuning the device. Continue reading at BBC News

Leave a Reply

featured blogs
Mar 1, 2021
“Do you know how FAST you were going?!?” That question strikes fear in almost all teenage drivers. The resulting ticket dashes any hope of a fun weekend. Plus, what happens when the parents find out?? No!!! Meanwhile, embedded and optical engineers may wonder the ...
Mar 1, 2021
I don't normally do these updates this frequently, and never before have I produced an update on a post from just a week ago. Jim Hogan RIP One of my mentors passed over the weekend from a heart... [[ Click on the title to access the full blog on the Cadence Community s...
Feb 26, 2021
OMG! Three 32-bit processor cores each running at 300 MHz, each with its own floating-point unit (FPU), and each with more memory than you than throw a stick at!...
Feb 25, 2021
Learn how ASIL-certified EDA tools help automotive designers create safe, secure, and reliable Advanced Driver Assistance Systems (ADAS) for smart vehicles. The post Upping the Safety Game Plan for Automotive SoCs appeared first on From Silicon To Software....

featured video

Silicon-Proven Automotive-Grade DesignWare IP

Sponsored by Synopsys

Get the latest on Synopsys' automotive IP portfolio supporting ISO 26262 functional safety, reliability, and quality management standards, with an available architecture for SoC development and safety management.

Click here for more information

featured paper

Using the DS28E18, The Basics

Sponsored by Maxim Integrated

This application note goes over the basics of using the DS28E18 1-Wire® to I2C/SPI Bridge with Command Sequencer and discusses the steps to get it up and running quickly. It then shows how to use the device with two different devices. The first device is an I2C humidity/temperature sensor and the second one is an SPI temperature sensor device. It concludes with detailed logs of each command.

Click here to download the whitepaper

Featured Chalk Talk

TensorFlow to RTL with High-Level Synthesis

Sponsored by Cadence Design Systems

Bridging the gap from the AI and data science world to the RTL and hardware design world can be challenging. High-level synthesis (HLS) can provide a mechanism to get from AI frameworks like TensorFlow into synthesizable RTL, enabling the development of high-performance inference architectures. In this episode of Chalk Talk, Amelia Dalton chats with Dave Apte of Cadence Design Systems about doing AI design with HLS.

More information