editor's blog
Subscribe Now

mCube’s New Low-Power Accel: What It Is and Isn’t

mCube made more noise recently with their announcement of a very small, low-power accelerometer. There were a number of aspects to the release; some intriguing, some… less so.

Let’s start with intrigue. The whole focus here is on a small device that can be used in space-constrained, power-stingy applications – like wearables. Obviously space is critical in any such device, but they point out that flexible circuit boards can enable more… well… flexible shape designs. And, while the accelerometer isn’t itself flexible, the closer you can come to an infinitesimal point on a flexible board, the more likely your connections are to remain intact. So, on flex boards, small=reliable.

They get the size by stacking a MEMS wafer with through-silicon vias (TSVs) over a CMOS wafer (all of which is then garnished with a cap wafer). This means that bond pads are needed only for actual connections to the outside world, not for intra-package die-to-die connections, which can take a lot of space.

mCube_figure.png 

Cost is also mitigated by using an old process with fully depreciated equipment. Right now, they’re at 180 nm; they could go to 150 without spiking the cost curve. In addition, all of the steps – from the different wafers to bonding them – are done in a single fab. This is as compared to other processes, where wafers have to be bundled up and sent to different fabs for different parts of the process.

They’ve also built in a couple key application-oriented features intended to go easy on battery life. First, you can tune the sample rate – fast for tablets and phones that need to be responsive enough for games (a couple thousand samples per second), slower (400 samp/s) for wearables. Second, they have power modes: a normal mode at 4.7 µA (50 Hz), a single-sample mode at 0.9 µA (25 Hz), and a “sniff mode” at 0.6 µA (6 Hz).

Sniff mode monitors for activity, sending an interrupt when detected. The threshold for what constitutes “active” can be tuned to suit the application.

So, functionally, this seems to compete pretty well. Which is really all that should matter. The less intriguing bits have to do with the marketing and what feels like playing a little loose with terminology. Any good marketer knows that it’s great if you can carve out for yourself a new market or “category” so that you have no competition. Problem is, too many folks have read that in their business books, and try it too often.

Here, mCube is trying to define the “IoMT” – Internet of Moving Things – as a separate thing. This suggests that, somehow, items with IMUs constitute this separate class of system. Sorry, but it just doesn’t work for me.

A little more worrisome is their use of the word “monolithic.” As in, they’re claiming a monolithic solution. First, “monolithic” literally means “from one stone.” This is not from one stone – it’s from three wafers. Monolithic would be if the MEMS and CMOS were fabricated out of the same wafer. (I won’t quibble about the cap wafer.)

They even use this to distinguish themselves from InvenSense, who uses what they call a “stacked” approach. They say that this distinction is significant enough to define the end of “Sensors 2.0” and the beginning of “Sensors 3.0.” Again, more new categories. Again, not working for me.

The only real difference here from InvenSense is that InvenSense inverts the MEMS wafer and bonds face-to-face (and does this in some other fab, by implication). mCube stacks bottom-to-top, connecting with TSVs. That has some benefits – don’t get me wrong – but it doesn’t feel to me like the revolutionary birth of a new category.

OK, kvetching over. You can find more information about the tiny new mCube accelerometer in their announcement.

Leave a Reply

featured blogs
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Stepper Motor Basics & Toshiba Motor Control Solutions
Sponsored by Mouser Electronics and Toshiba
Stepper motors offer a variety of benefits that can add value to many different kinds of electronic designs. In this episode of Chalk Talk, Amelia Dalton and Doug Day from Toshiba examine the different types of stepper motors, the solutions to drive these motors, and how the active gain control and ADMD of Toshiba’s motor control solutions can make all the difference in your next design.
Sep 29, 2023
26,259 views