editor's blog
Subscribe Now

Building Better Wizards

Wizards are becoming more and more prevalent. Lest you’re concerned that Dumbledore’s relatives are coming to exact revenge, fear not: we speak here of wizards in the GUI (as opposed to gooey) sense. Yes, there are bastions of holdouts that cling to command line interfaces as a measure of their hacker bona fides, but there are solid reasons to like a well-designed wizard.

And “well-designed” is the operative phrase here. You may think of a wizard as no more than a way to simplify processes that could just as effectively be done using the command line if only you were boss enough to remember all the arcane intentionally-obscure commands required to get stuff done. And in some cases, such automation is the goal. But the potential goes beyond that: it’s an opportunity for a world-view transformation.

This is a favorite old topic of mine, but it was refreshed for me while watching a Movea SmartFusion Studio demo: when assembling a sensor fusion algorithm, a wide variety of filters are made available. And I thought, “How do you know which filter to pick??”

Now, you could easily argue that, if you don’t know your filters, then you have no business getting involved in sensor fusion. Perhaps. But really, a designer is interested in a behavior, not necessarily in knowing the details of how that behavior is implemented in some specific algorithm or circuit.

This became really clear to me several years ago on a consulting project where I was designing and prototyping a wizard for a piece of communication IP. The IP was very flexible, so there were lots of options that the user, who would be a system designer, could tweak. The obvious first approach to the wizard was simply to provide option fields for the user to fill in.

Being a communication protocol, it had FIFOs for elasticity; the user could dial up how big those FIFOs were to be. So I put a text field there for the size of the FIFO. But I asked the designers of the IP, “How should the user figure out how big the FIFO should be?” My first thought was that this information would be useful in the user manual. (Stop laughing… I’m sure someone reads those…)

They answered that the user would decide how many packets they wanted to buffer; that and the selectable packet size would determine the FIFO size. Simple enough.

But then I thought, “Wait, why are we making the user of this wizard do some paper-and-pencil calculations before going back to the computer? What if, instead of asking for the FIFO size, we asked for the number of packets?” The wizard already had the packet size somewhere else, so it then had all the information needed to calculate the FIFO size. No paper or pencil required.

Leave a Reply

featured blogs
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Digi XBee 3 Global Cellular Solutions
Sponsored by Mouser Electronics and Digi
Adding cellular capabilities to your next design can be a complicated, time consuming process. In this episode of Chalk Talk, Amelia Dalton and Alec Jahnke from Digi chat about how Digi XBee Global Cellular Solutions can help you navigate the complexities of adding cellular connectivity to your next design. They investigate how the Digi XBee software can help you monitor and manage your connected devices and how the Digi Xbee 3 cellular ecosystem can help future proof your next design.
Nov 6, 2023
22,509 views