feature article
Subscribe Now

Making a Connection

Engineering Talent Meets Racing Enthusiasm, Around the Globe

“The real secret of success is enthusiasm.” – Walter Chrysler

Last week I interviewed a real, live, professional race car engineer for the famous Andretti racing team, whose workshop and garages are based just outside the equally famous racetrack at Indianapolis. And what’s the first thing I learned?

She’s German.

Mechanical engineer Judith Henzel got her degree in Wiesbaden before going to work for TE Connectivity, a huge 75,000-person company that makes… well, a lot of things. As big as it is, TE is relatively unknown unless you make aircraft or industrial robots… or racecars. You see, TE and Henzel both specialize in high-reliability connectors for harsh environments. The fact that she’s a lifelong motorsports fan is just a bonus.

Henzel is normally a full-time employee of TE in Germany, but she’s been seconded to the Andretti Formula E race team in the USA for the six-month racing season. She’s what you might call an embedded engineer. Her job is to act as conduit between the producer (TE) and the consumer (Andretti). Formula E is the international series for all-electric racecars. All the competing teams currently run the same chassis, with similar batteries and motors, but the rest of the car – sensors, data-acquisition systems, telemetry, and so forth – are custom-designed. Each team has its own ideas about how to tweak the car, and Andretti relies heavily on TE for that technology. Hence, the personnel sharing.

TE provides both connectors and sensors. Henzel wouldn’t say how many sensors are on the racecar – that’s classified information – but it’s likely several dozen. Accelerometers are mounted everywhere to measure the yaw, pitch, and roll of the car during a race. Pressure sensors measure gearbox lubricants, coolant pressures, tire pressures, and airflow over the bodywork. Temperature sensors perform the obvious function, keeping track of battery temperatures, coolant temperatures, ambient air temperatures, and the driver’s body temperature. It’s hot work driving an electric car on the streets of Buenos Aires in the summer.

Connectors are a unique challenge for racecars, particularly all-electric ones. There are the obvious high-voltage connectors for battery packs, but also the myriad connectors for sensor networks, telemetry, and control systems. Any and all of these have to be removable and replaceable, ideally within a few seconds and without specialized tools. Yet they also have to withstand constant vibration, heat, cold, and corrosion. Oh, and if they can be made light and cheap, that would be nice too.

Henzel points out that all cars have hundreds of connectors, but “series production cars” (as opposed to custom-built racecars) don’t have the same requirements as racers. Road cars don’t have their wiring harnesses connected and disconnected hundreds of times. They’re clipped together once at the factory in Detroit, Munich, or Hiroshima, and that’s it. Road cars also don’t usually see temperatures much above 120 degrees F. For the race team, anything below that gives them practically a day off.

The lessons learned from racing filter back to the factory and eventual incorporation in TE’s product lines for aircraft, normal automobiles, and industrial equipment. From TE’s perspective, Andretti is a mobile shake, rattle, and roll test jig. The race team subjects TE’s sensors and connectors to as much abuse as they were designed to handle, and then some. If they can survive the crowded confines of a Formula E chassis, they can probably survive anywhere.

The job comes with its own perks – or downsides, depending on your interests. At one of the first races of the year, the car crashed heavily into the barriers and had to be towed back to the pit garage. All the mechanics dove onto the car, hoping to repair it in time to finish the race, Henzel included. The team needed the help, and she was as knowledgeable as anyone about the car’s internals.

During a normal race weekend, however, you’ll find Henzel inside the pit garage trying to keep her hands clean. She monitors real-time telemetry streaming off the vehicles and contributes to battlefield decisions regarding reliability issues. After the races, she and the rest of the team look at ways to improve the car and, by implication, TE’s sensor and connector products. Next time you watch a Formula E race, look in the Andretti team garage for the bright orange shirt, the radio headset, and the big grin.

2 thoughts on “Making a Connection”

    1. Nope. I wasn’t really talking to Judith as a woman, per se, but as an engineer with a cool job. Her chromosomes didn’t really enter into it.

Leave a Reply

featured blogs
Dec 7, 2021
We explain the fundamentals of photonics, challenges in photonics research & design, and photonics applications including communications & photonic computing. The post Harnessing the Power of Light: Photonics in IC Design appeared first on From Silicon To Software....
Dec 7, 2021
Optimization is all about meeting requirements. In the last post , you read about how you can use measurements to optimize a circuit. This post will discuss the use of curve fitting to optimize a... [[ Click on the title to access the full blog on the Cadence Community site....
Dec 6, 2021
The scary thing is that this reminds me of the scurrilous ways in which I've been treated by members of the programming and IT communities over the years....
Nov 8, 2021
Intel® FPGA Technology Day (IFTD) is a free four-day event that will be hosted virtually across the globe in North America, China, Japan, EMEA, and Asia Pacific from December 6-9, 2021. The theme of IFTD 2021 is 'Accelerating a Smart and Connected World.' This virtual event ...

featured video

Architecture All Access: Modern FPGA Architecture

Sponsored by Intel

In this 20-minute video, Intel Fellow Prakash Iyer takes you on a journey within the architecture of an FPGA, starting with simple logic gates and then moving up through architecture, design, and applications. Along the way, he answers many questions you might have about FPGAs, even if you’ve worked with FPGAs for years.

Click here for more information

featured paper

MAX22005 Universal Analog Input Enables Flexible Industrial Control Systems

Sponsored by Analog Devices

This application note provides information to help system engineers develop extremely precise, highly configurable, multi-channel industrial analog input front-ends by utilizing the MAX22005.

Click to read more

featured chalk talk

Industrial CbM Solutions from Sensing to Actionable Insight

Sponsored by Mouser Electronics and Analog Devices

Condition based monitoring (CBM) has been a valuable tool for industrial applications for years but until now, the adoption of this kind of technology has not been very widespread. In this episode of Chalk Talk, Amelia Dalton chats with Maurice O’Brien from Analog Devices about how CBM can now be utilized across a wider variety of industrial applications and how Analog Device’s portfolio of CBM solutions can help you avoid unplanned downtime in your next industrial design.

Click here for more information about Analog Devices Inc. Condition-Based Monitoring (CBM)