feature article
Subscribe Now

Who Controls the Power?

Open Power Foundation Aims to Make PowerPC More Plentiful

Once upon a time, there were many little RISC processors frolicking in the deep green microprocessor forest. There was the jaunty little ARM. The bright little SPARC. The mighty little MIPS. The aristocratic little PowerPC. And so many others. They all played and laughed and had ever such a good time.

Then, one by one, the happy little RISC processors started disappearing. Were they gobbled up by the big, bad CISC processor that lurked in the woods? Did they cross over the Wheatstone Bridge and into another land? Or did they just get lost in the tall grass, wandering aimlessly until their mommies and daddies forgot about them?

Before long, the deep green microprocessor woods came to be dominated by just two lucky little microprocessors. They rose to the top of the food chain until they had the most splendid view from the tops of the trees. But all the other, unlucky little processors didn’t completely disappear. No, they just continued to amble and gambol amongst the flowers and grasses, unseen and unnoticed by most visitors. But if you listen very hard, you can still hear them rustling…

Here’s one now! If you direct your browser to www.OpenPowerFoundation.org you can see them working away, busy like beavers building a dam to courageously hold back the rushing stream. What brave little microprocessors! What spirit! Let’s wish them luck!

Back in our dreary gray world of grown-up engineers, the Open Power Foundation is a nonprofit group that works to build up a viable ecosystem around Power architecture–based processors. They’re quick to point out that they’re separate from Power.Org, the organization that defines new Power microprocessors. Whereas the latter group oversees chip-level design, the Open Power Foundation (OPF) looks after system-level technology.

What might that include? Well, things like memory interfaces, FPGA interfaces, firmware, hypervisors, and so on. In short, all the stuff that vendors need to agree upon in order for their customers to bolt together workable Power-based systems. The x86-based PC world has enjoyed these sorts of standard for years. Now it’s Power’s turn.

OPF counts among its members memory makers like Hynix, Samsung, and Micron, software companies like Google and Ubuntu, system-level vendors like Tyan, Hitachi, and IBM, and noted FPGA makers Altera and Xilinx. It’s a pretty good collection of stakeholders in the global Power ecosystem.

The group was founded at the end of last year with the goal of fostering communication among its members in order to prevent fracturing and fragmentation. Agreeing on technical details like firmware standards or boot-time protocols hurts no one’s competitive advantage, and it makes the whole ecosystem stronger. If we can agree on how hypervisors will hook into the CPU’s architectural features, we’re all better off, right? 

The foundation also acts as an IP clearinghouse for Power-related software and hardware technology. The group doesn’t develop any IP of its own, but it does pass through its members’ IP. Want to put together a Power-based server? OPF is a good first stop. Foundation head Brad McCredie describes it as the “Chamber of Commerce” for Power-based design.

OPF is really all about Power-based servers, as opposed to embedded systems. The embedded realm has pretty much been ceded to Freescale and its painfully named Qorivva and QorIQ product lines. Anyone else using Power processors is probably building a server, the systems for which the Power architecture was originally created. IBM is obviously a fan of Power-based servers (including the massive Watson), but a smattering of other Power aficionados thrive as well. Open Power Foundation caters to them, providing steady guidance so no one wanders astray and potentially shatters the delicate hegemony that currently exists.

As with any volunteer organization, OPF has no real power (ahem) over its members and can’t force them to design systems or develop software in any particular way. But it’s in everyone’s best interest to follow the guidelines, for the benefit of all.

In biology, diverse ecosystems fare better than monocultures. They’re better able to ward off unknown invaders or changes in environment. Rainforests and woodlands thrive because they’re varied, with each species from the smallest shrub to the largest oak subtly helping and supporting the others. The engineering world likewise thrives on variety and change, so let’s hope Open Power Foundation’s work aids the cause of diversity. 

One thought on “Who Controls the Power?”

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 21, 2023
Labforge is a Waterloo, Ontario-based company that designs, builds, and manufactures smart cameras used in industrial automation and defense applications. By bringing artificial intelligence (AI) into their vision systems with Cadence , they can automate tasks that are diffic...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

featured video

TDK PowerHap Piezo Actuators for Ideal Haptic Feedback

Sponsored by TDK

The PowerHap product line features high acceleration and large forces in a very compact design, coupled with a short response time. TDK’s piezo actuators also offers good sensing functionality by using the inverse piezo effect. Typical applications for the include automotive displays, smartphones and tablet.

Click here for more information about PowerHap Piezo Actuators

featured paper

Intel's Chiplet Leadership Delivers Industry-Leading Capabilities at an Accelerated Pace

Sponsored by Intel

We're proud of our long history of rapid innovation in #FPGA development. With the help of Intel's Embedded Multi-Die Interconnect Bridge (EMIB), we’ve been able to advance our FPGAs at breakneck speed. In this blog, Intel’s Deepali Trehan charts the incredible history of our chiplet technology advancement from 2011 to today, and the many advantages of Intel's programmable logic devices, including the flexibility to combine a variety of IP from different process nodes and foundries, quicker time-to-market for new technologies and the ability to build higher-capacity semiconductors

To learn more about chiplet architecture in Intel FPGA devices visit: https://intel.ly/47JKL5h

featured chalk talk

Portable Medical Devices and Connected Health
Decentralized healthcare is moving from hospitals and doctors’ offices to the patients’ home and office and in the form of personal, wearable, and connected devices. In this episode of Chalk Talk, Amelia Dalton and Roger Bohannan from Littelfuse examine the components, functions and standards for a variety of portable connected medical devices. They investigate how Littelfuse can help you navigate the development of your next portable connected medical design.
Jun 26, 2023
10,999 views