feature article
Subscribe Now

Who Controls the Power?

Open Power Foundation Aims to Make PowerPC More Plentiful

Once upon a time, there were many little RISC processors frolicking in the deep green microprocessor forest. There was the jaunty little ARM. The bright little SPARC. The mighty little MIPS. The aristocratic little PowerPC. And so many others. They all played and laughed and had ever such a good time.

Then, one by one, the happy little RISC processors started disappearing. Were they gobbled up by the big, bad CISC processor that lurked in the woods? Did they cross over the Wheatstone Bridge and into another land? Or did they just get lost in the tall grass, wandering aimlessly until their mommies and daddies forgot about them?

Before long, the deep green microprocessor woods came to be dominated by just two lucky little microprocessors. They rose to the top of the food chain until they had the most splendid view from the tops of the trees. But all the other, unlucky little processors didn’t completely disappear. No, they just continued to amble and gambol amongst the flowers and grasses, unseen and unnoticed by most visitors. But if you listen very hard, you can still hear them rustling…

Here’s one now! If you direct your browser to www.OpenPowerFoundation.org you can see them working away, busy like beavers building a dam to courageously hold back the rushing stream. What brave little microprocessors! What spirit! Let’s wish them luck!

Back in our dreary gray world of grown-up engineers, the Open Power Foundation is a nonprofit group that works to build up a viable ecosystem around Power architecture–based processors. They’re quick to point out that they’re separate from Power.Org, the organization that defines new Power microprocessors. Whereas the latter group oversees chip-level design, the Open Power Foundation (OPF) looks after system-level technology.

What might that include? Well, things like memory interfaces, FPGA interfaces, firmware, hypervisors, and so on. In short, all the stuff that vendors need to agree upon in order for their customers to bolt together workable Power-based systems. The x86-based PC world has enjoyed these sorts of standard for years. Now it’s Power’s turn.

OPF counts among its members memory makers like Hynix, Samsung, and Micron, software companies like Google and Ubuntu, system-level vendors like Tyan, Hitachi, and IBM, and noted FPGA makers Altera and Xilinx. It’s a pretty good collection of stakeholders in the global Power ecosystem.

The group was founded at the end of last year with the goal of fostering communication among its members in order to prevent fracturing and fragmentation. Agreeing on technical details like firmware standards or boot-time protocols hurts no one’s competitive advantage, and it makes the whole ecosystem stronger. If we can agree on how hypervisors will hook into the CPU’s architectural features, we’re all better off, right? 

The foundation also acts as an IP clearinghouse for Power-related software and hardware technology. The group doesn’t develop any IP of its own, but it does pass through its members’ IP. Want to put together a Power-based server? OPF is a good first stop. Foundation head Brad McCredie describes it as the “Chamber of Commerce” for Power-based design.

OPF is really all about Power-based servers, as opposed to embedded systems. The embedded realm has pretty much been ceded to Freescale and its painfully named Qorivva and QorIQ product lines. Anyone else using Power processors is probably building a server, the systems for which the Power architecture was originally created. IBM is obviously a fan of Power-based servers (including the massive Watson), but a smattering of other Power aficionados thrive as well. Open Power Foundation caters to them, providing steady guidance so no one wanders astray and potentially shatters the delicate hegemony that currently exists.

As with any volunteer organization, OPF has no real power (ahem) over its members and can’t force them to design systems or develop software in any particular way. But it’s in everyone’s best interest to follow the guidelines, for the benefit of all.

In biology, diverse ecosystems fare better than monocultures. They’re better able to ward off unknown invaders or changes in environment. Rainforests and woodlands thrive because they’re varied, with each species from the smallest shrub to the largest oak subtly helping and supporting the others. The engineering world likewise thrives on variety and change, so let’s hope Open Power Foundation’s work aids the cause of diversity. 

One thought on “Who Controls the Power?”

Leave a Reply

featured blogs
Apr 11, 2021
https://youtu.be/D29rGqkkf80 Made in "Hawaii" (camera Ziyue Zhang) Monday: Dynamic Duo 2: The Sequel Tuesday: Gall's Law and Big Ball of Mud Wednesday: Benedict Evans on Tech in 2021... [[ Click on the title to access the full blog on the Cadence Community sit...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

Single Pair Ethernet

Sponsored by Mouser Electronics and Phoenix Contact

Single-pair Ethernet is revolutionizing industrial system design, with new levels of performance and simplicity. But, before you make the jump, you need to understand the options for cables, connectors, and other infrastructure. In this episode of Chalk Talk, Amelia Dalton chats with Lyndsey Walling of Phoenix Contact about the latest in single-pair Ethernet for industrial applications.

Click here for more information about Phoenix Contact Single Pair Ethernet (SPE) Connectors