feature article
Subscribe Now

We Need Some Steenking Badges!

Indoor Location System Knows Where Your Treasure is Buried

As first-world problems go, losing your car keys is a bad one. Losing a whole warehouse full of shippable merchandise is probably worse, but warehouses typically have lots of people standing around watching over the goods. But what do you do when you’ve lost your car keys somewhere inside the warehouse? Needle, meet haystack. Not so easy now, huh? What are you going to do?

If you’ve planned ahead, you’d have little badges on your keys – badges stuffed with technology designed by DecaWave. The Dublin, Ireland startup has created an itty-bitty little chip it calls the ScenSor that’s designed to solve this, and much larger, problems.

DecaWave specializes in what’s called real-time location systems (RTLS), which is basically indoor GPS for movable items. Unlike real GPS, however, RTLS chips like ScenSor are two-way. That is, they both broadcast and receive. They receive tracking signals so they know where they are, and they transmit a signal so that you know where they are. It wouldn’t make much sense to have a receive-only chip that knows where it is but won’t tell you.

DecaWave’s claim to fame is ScenSor’s small size. Location tags are nice and all, but they have to be exceedingly small and cheap to be commercially viable. Nobody wants to hang a bulky $5 tag on every $15 paperback book in the warehouse, so the tags have to be physically small and cost next to nothing. DecaWave feels it’s got both of those criteria nailed, with a 6mm package size and volume price of around $2.

How’s it work? Well, that depends. There are various competing schemes for indoor location, and ScenSor works with the three most popular methods. In the first case, there’s the relatively dumb, “How close am I?” method. This relies on a simple beacon signal from each tag and a handheld reader than can distinguish signal strength (and optionally, direction). The user simply waves the reader around like a Geiger counter or a divining rod, heading toward the source of the signal. There’s no triangulation involved, just an electronic game of Marco Polo.

The second method works more like terrestrial GPS, with fixed transmitters scattered around at known locations, such as the corners of a warehouse. Each ScenSor tag then triangulates its position based on the strength of these incoming signals and the relative difference in their arrival times. When it’s interrogated by a reader, the tag gives up its position. This mode is useful for locating misplaced goods inside a building or other known area that has RTLS “anchors” set up. 

Finally, there’s “fireman mode,” where there are no fixed anchors or reference points at all, and each tag must determine its position using nothing but its spatial relationship to all the other tags in the area. Each tag squawks out an ID while also listening for the ID squawks of other tags. Based on signal strength, angle of arrival, and timing information, each tag can then independently calculate its own position relative to all the other tags. That doesn’t tell you where this “tag cloud” is in real space, but it’s still plenty useful. DecaWave suggests that emergency first-responders can use this method to locate each other in real time as they explore an unfamiliar structure. 

Remarkably, each ScenSor chip has a location accuracy of just 7 centimeters (that’s less than 3 inches in old money). With that kind of precision, there’s no excuse for losing a package, roll-around cart, expensive lab instrument, or wandering patient. Three-inch accuracy means you can tell which side of the wall an item is on (a common annoyance with less-accurate positioning systems).

The effective range is variable. Like any low-power wireless device, ScenSor chips are subject to interference and obstructions, especially since they’re intended to be used indoors. Under ideal circumstances (radio silence, tissue-paper walls, no Faraday cages), ScenSor chips have a range of over 300 meters (1000 feet). DecaWave says you can depend on a 40-meter range inside a more realistic building.

The IEEE 802.15.4a specification governing RTLS specifies ultrawideband transceivers as a way to avoid interference with other common inhabitants of the wireless spectrum, so ScenSor chips are fairly immune to Wi-Fi or Bluetooth signals. Nevertheless, facilities managers often like to put their RTLS anchor beacons in the same place as their Wi-Fi access points, which is exactly the wrong thing to do if you’re trying to create a network of ultra-sensitive low-power tags. Thus, DecaWave is working on a special Wi-Fi–immune version of ScenSor that’s meant to live directly inside an access point. If you can’t beat ’em, join ’em.

Like Wi-Fi, ZigBee, or Bluetooth, the basics of RTLS are standardized to make vendors’ chips interoperable. That means DecaWave can’t compete on the concept of indoor positioning, only on ScenSor’s specific implementation. But if the company has cracked the code for small size, low power consumption, and low cost as it claims, it may have finally located the missing keys to widespread success of RTLS. 

Leave a Reply

featured blogs
Nov 30, 2023
Cadence Spectre AMS Designer is a high-performance mixed-signal simulation system. The ability to use multiple engines and drive from a variety of platforms enables you to "rev up" your mixed-signal design verification and take the checkered flag in the race to the ...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured webinar

Rapid Learning: Purpose-Built MCU Software Tools for Data-Driven Embedded IoT Systems

Sponsored by ITTIA

Are you developing an MCU application that captures data of all kinds (metrics, events, logs, traces, etc.)? Are you ready to reduce the difficulties and complications involved in developing an event- and data-centric embedded system? This webinar will quickly introduce you to excellent MCU-specific software options for developing your next-generation data-driven IoT systems. You will also learn how to recognize and overcome data management obstacles. Register today as seats are limited!

Register Now!

featured chalk talk

Portable Medical Devices and Connected Health
Decentralized healthcare is moving from hospitals and doctors’ offices to the patients’ home and office and in the form of personal, wearable, and connected devices. In this episode of Chalk Talk, Amelia Dalton and Roger Bohannan from Littelfuse examine the components, functions and standards for a variety of portable connected medical devices. They investigate how Littelfuse can help you navigate the development of your next portable connected medical design.
Jun 26, 2023
18,961 views