feature article
Subscribe Now

ARM Goes Big… and Little

Switch Fabric and BeagleBoard Define Two Extremes

Another day, another ARM encroachment into nontraditional markets.

Last week ARM announced yet another addition to its dizzying array of licensed hardware IP, this time a high-end multiprocessor interconnect fabric designed for servers and networking equipment. Are we sure this is the same ARM processor architecture that started out in the little BBC Micro home computer, lo those many years ago?

Yup, pretty sure. I’m also pretty sure this is the same ARM that’s been grinding its way into the low-end microcontroller market with its Cortex-M0, stealing market share from traditionalists like Renesas, Freescale, Microchip, and others.

Overall, it’s good times for the boys and girls from Cambridge. ARM has become the de facto standard choice for a lot of embedded developers. You almost need a reason not to use ARM chips.

First, the network thingie. The new announcement was code-named Dickens (another popular British export) but officially known as CoreLink CCN-504. The name stands for cache-coherent network, and the 504… well, more on that in a moment. What CCN-504 does is to join as many as 16 ARM Cortex-A15 processors together, while also tying in high-speed I/O, caches, network interfaces, memory, and so forth. It may not be as sexy as a new processor, but it’s just as important if you’re designing high-end ARM-based networking equipment. And these days, who isn’t?

What makes the musically named CCN-504 interesting is that it includes the entire L3 cache. So it’s not just another on-chip network, like AMBA or AXI—it’s more of an on-chip subsystem that happens to include AXI interfaces. Since Cortex-A15 processors have their own L1 and L2 caches, the CCN-504 supplies the L3, et voila! you’re done.

It’s all about time-to-market, kiddies, and this new interconnect/subsystem will get you there in a hurry. Most network-chip makers aren’t really interested in designing the interconnect themselves (with some exceptions, such as Calxeda); they just want to get their shiny new ARM-based chips to market pronto. Designers will license the CCN-504 for all the same reasons they licensed the Cortex-A15 in the first place: it’s quicker and easier than doing it themselves, and they can add value elsewhere.

As for that -504 part? The first digit is ARM’s standard prefix for interconnects, but the final digit tells you how many “clusters” of four ARM processors it supports. Four clusters equals 16 processors. But there are other versions on the horizon, including one that will support “a lot more” than four clusters. In other words, expect to see a 32- or 64-processor version before too long. ARM also hinted that a single-cluster version is on the drawing board, for designers who might want only four total processors.

All in all, this is part of ARM’s master plan for world domination. The company, through its many licensees, is making a serious run at the high-performance, high-profit server market. That used to be a traditional Intel stronghold, with some miscellaneous MIPS, PowerPC, SPARC, and proprietary RISC processors thrown in. ARM seemed like the least likely CPU to show up at that party, but, as we’ve discussed elsewhere on these pages, it’s likely to become the presumptive runner-up to Intel pretty soon.

Over at the other, more-affordable, end of the spectrum, I petted a BeagleBoard last week. If you haven’t brought one of these cute little puppies home for yourself, you should. BeagleBoard is TI’s brand of a $125 evaluation board, this one with an ARM processor (naturally). BeagleBoard is analogous to Raspberry Pi, Arduino, PandaBoard, and a number of other similar low-cost development boards. It’s a cheap way to get started on ARM software development; even if you don’t like the board’s hardware, you can at least run some code and worry about board-specific features later.

On the other hand, if you do like the hardware, you can keep it. Meaning, BeagleBoard is open-sourced, so you can use, reuse, or borrow the schematics any way you like. Same goes for the onboard software. There’s nothing about BeagleBoard that you can’t steal and repurpose for your own project. That makes it uniquely powerful, and its popularity is reflected in the number of websites, resources, and discussion groups dedicated to it. It’s handy as an introduction to ARM hardware and software, or as a full-on platform for your own development. Either way, it’s $125 well spent. 

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

Cutting the AI Power Cord: Technology to Enable True Edge Inference

Sponsored by Mouser Electronics and Maxim Integrated

Artificial intelligence and machine learning are exciting buzzwords in the world of electronic engineering today. But in order for artificial intelligence or machine learning to get into mainstream edge devices, we need to enable true edge inference. In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis from Maxim Integrated about the MAX78000 family of microcontrollers and how this new microcontroller family can help solve our AI inference challenges with low power, low latency, and a built-in neural network accelerator. 

Click here for more information about Maxim Integrated MAX78000 Ultra-Low-Power Arm Cortex-M4 Processor