feature article
Subscribe Now

When Things Start to Think

Redpine’s M2M Module Eases Machine Communication

The title this week is borrowed from the book by Neil Gershenfeld, which includes one of the best descriptions of embedded systems that I’ve ever read. It’s also a good introduction to microcontrollers and embedded software for your nontechnical friends who wonder what you do for a living.

Part of what we do, of course, is to plot world domination by cybernetic organisms. I, for one, welcome our robot overlords and always do my part to hasten their ascendancy. And what good is a robot army without a good means of communication? If Napoleon’s army traveled on its stomach, surely the next one will travel on the airwaves, using wireless communications protocols to further their manifest ends.

Helping in this noble struggle is Redpine Signals. We’ve talked about this company before (see EE Journal, May 11, 2010). The company’s latest product is called WiSeConnect and it’s an all-in-one wireless module for machine-to-machine communications. That’s M2M for those in the know.

The thing is tiny: only about one square inch. And it couldn’t be easier to use. The only interface you see is a UART, SPI, USB, or Ethernet (your choice). The module itself handles the messy TCP/IP stack, the DHCP server stuff, HTTP requests, and the wireless overhead. You don’t need to know any of that – indeed, you’re prevented from messing with it – and you can just merrily poke bytes at the UART.

It even comes with security (acronym alert): WPA/WPA2-PSK, TKIP, WEP, EAP-TLS, EAP-TTLS, EAP-FAST, and PEAP-MSHCAP-V2 are all supported. A built-in antenna is included, or you can attach your own, and the thing even speaks to SEP 2.0 smart appliances. In short, there ain’t a lot that this little module won’t do.

Perhaps its best feature is that it’s so idiot-proof. Plenty of embedded designers are adding wireless connectivity to their products, but not a lot of us have experience creating and managing wireless interfaces. And as the spectrum, frequencies, interfaces, and protocols associated with Wi-Fi (and Bluetooth, and ZigBee, et al.) get more complicated, that job just gets tougher. If you didn’t memorize Shannon’s Law in first-year engineering school, you’re probably already too late to the party. Wi-Fi connectivity is one aspect of product design that I happily abdicate to outside experts.

Want to make your own Internet-enabled Coke machine? This thing is just the ticket. Wireless printer? Check. Cordless security cameras? They’ve got that covered. Invisible flying killer robot drone? Heck, all you have to do is the invisible flying robot part; the wireless communication to the rest of the swarm is in the bag.

I’ve Got X-Ray Eyes

Now that we’ve swept communication and collaboration out of the way, it’s time to deal with 3D stereoscopic laser X-ray vision. Well, maybe not the laser part, but 3D stereo for sure. Toshiba and Movidius have formed a cabal (they call it a routine business collaboration, but we know better, don’t we?) that aims to bring 3D imaging to cellphones. You see, Toshiba already makes tiny little cameras for cellphones, and Movidius makes 3D-imaging silicon and software that renders those images into recognizable 3D pictures.

You may remember Movidius from our earlier coverage (see EE Journal, March 9, 2010), where they announced a take-it-anywhere editing studio. That was also intended for cellphones and other portable devices. Sense a pattern here? The Irish wizards at Movidius specialize in that kind of thing.

You see, snapping 3D pictures is harder than it looks. Having two cameras is just the beginning. If the two cameras aren’t identical (and for most dual-camera cellphones, they aren’t), you have the problem of merging two images that have different resolutions, different white-balance, different focus, different saturation, and who-knows-what other variations. Even if the cameras are nominally identical, subtle manufacturing differences between them can make their two images look different anyway. Even trivially simple problems like holding your cellphone camera slightly askew can vastly complicate 3D image synthesis.

Movidius fixes all of that with its 3D image post-processing chips like the new MA1178. It handles the raw image output from the twin cameras, even if the cameras aren’t identical. The MA1178 then munges the images – it also works with video – and passes everything to the downstream chipset. The slick part is that your device’s system logic doesn’t have to know the MA1178 is there. It simply works inline, inserting itself between the cameras and the logic to which they were previously attached. A kind of intelligent filter chip. Very sneaky.

Between the 3D stereoscopic vision and the secure, wireless communication, it looks like we’re well on our way to the new cybernetic world order. On your feet, soldier! We’ve got work to do! 

Leave a Reply

featured blogs
Dec 1, 2023
Why is Design for Testability (DFT) crucial for VLSI (Very Large Scale Integration) design? Keeping testability in mind when developing a chip makes it simpler to find structural flaws in the chip and make necessary design corrections before the product is shipped to users. T...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

TDK CLT32 power inductors for ADAS and AD power management

Sponsored by TDK

Review the top 3 FAQs (Frequently Asked Questions) regarding TDK’s CLT32 power inductors. Learn why these tiny power inductors address the most demanding reliability challenges of ADAS and AD power management.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

ROHM's 4th Generation SiC MOSFET
In this episode of Chalk Talk, Amelia Dalton and Ming Su from ROHM Semiconductor explore the benefits of the ROHM’s 4th generation of silicon carbide MOSFET. They investigate the switching performance, capacitance improvement, and ease of use of this new silicon carbide MOSFET family.
Jun 26, 2023
19,051 views