feature article
Subscribe Now

When Things Start to Think

Redpine’s M2M Module Eases Machine Communication

The title this week is borrowed from the book by Neil Gershenfeld, which includes one of the best descriptions of embedded systems that I’ve ever read. It’s also a good introduction to microcontrollers and embedded software for your nontechnical friends who wonder what you do for a living.

Part of what we do, of course, is to plot world domination by cybernetic organisms. I, for one, welcome our robot overlords and always do my part to hasten their ascendancy. And what good is a robot army without a good means of communication? If Napoleon’s army traveled on its stomach, surely the next one will travel on the airwaves, using wireless communications protocols to further their manifest ends.

Helping in this noble struggle is Redpine Signals. We’ve talked about this company before (see EE Journal, May 11, 2010). The company’s latest product is called WiSeConnect and it’s an all-in-one wireless module for machine-to-machine communications. That’s M2M for those in the know.

The thing is tiny: only about one square inch. And it couldn’t be easier to use. The only interface you see is a UART, SPI, USB, or Ethernet (your choice). The module itself handles the messy TCP/IP stack, the DHCP server stuff, HTTP requests, and the wireless overhead. You don’t need to know any of that – indeed, you’re prevented from messing with it – and you can just merrily poke bytes at the UART.

It even comes with security (acronym alert): WPA/WPA2-PSK, TKIP, WEP, EAP-TLS, EAP-TTLS, EAP-FAST, and PEAP-MSHCAP-V2 are all supported. A built-in antenna is included, or you can attach your own, and the thing even speaks to SEP 2.0 smart appliances. In short, there ain’t a lot that this little module won’t do.

Perhaps its best feature is that it’s so idiot-proof. Plenty of embedded designers are adding wireless connectivity to their products, but not a lot of us have experience creating and managing wireless interfaces. And as the spectrum, frequencies, interfaces, and protocols associated with Wi-Fi (and Bluetooth, and ZigBee, et al.) get more complicated, that job just gets tougher. If you didn’t memorize Shannon’s Law in first-year engineering school, you’re probably already too late to the party. Wi-Fi connectivity is one aspect of product design that I happily abdicate to outside experts.

Want to make your own Internet-enabled Coke machine? This thing is just the ticket. Wireless printer? Check. Cordless security cameras? They’ve got that covered. Invisible flying killer robot drone? Heck, all you have to do is the invisible flying robot part; the wireless communication to the rest of the swarm is in the bag.

I’ve Got X-Ray Eyes

Now that we’ve swept communication and collaboration out of the way, it’s time to deal with 3D stereoscopic laser X-ray vision. Well, maybe not the laser part, but 3D stereo for sure. Toshiba and Movidius have formed a cabal (they call it a routine business collaboration, but we know better, don’t we?) that aims to bring 3D imaging to cellphones. You see, Toshiba already makes tiny little cameras for cellphones, and Movidius makes 3D-imaging silicon and software that renders those images into recognizable 3D pictures.

You may remember Movidius from our earlier coverage (see EE Journal, March 9, 2010), where they announced a take-it-anywhere editing studio. That was also intended for cellphones and other portable devices. Sense a pattern here? The Irish wizards at Movidius specialize in that kind of thing.

You see, snapping 3D pictures is harder than it looks. Having two cameras is just the beginning. If the two cameras aren’t identical (and for most dual-camera cellphones, they aren’t), you have the problem of merging two images that have different resolutions, different white-balance, different focus, different saturation, and who-knows-what other variations. Even if the cameras are nominally identical, subtle manufacturing differences between them can make their two images look different anyway. Even trivially simple problems like holding your cellphone camera slightly askew can vastly complicate 3D image synthesis.

Movidius fixes all of that with its 3D image post-processing chips like the new MA1178. It handles the raw image output from the twin cameras, even if the cameras aren’t identical. The MA1178 then munges the images – it also works with video – and passes everything to the downstream chipset. The slick part is that your device’s system logic doesn’t have to know the MA1178 is there. It simply works inline, inserting itself between the cameras and the logic to which they were previously attached. A kind of intelligent filter chip. Very sneaky.

Between the 3D stereoscopic vision and the secure, wireless communication, it looks like we’re well on our way to the new cybernetic world order. On your feet, soldier! We’ve got work to do! 

Leave a Reply

featured blogs
May 20, 2022
I'm very happy with my new OMTech 40W CO2 laser engraver/cutter, but only because the folks from Makers Local 256 helped me get it up and running....
May 20, 2022
This week was the 11th Embedded Vision Summit. So that means the first one, back in 2011, was just a couple of years after what I regard as the watershed event in vision, the poster session (it... ...
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...

featured video

Intel® Agilex™ M-Series with HBM2e Technology

Sponsored by Intel

Intel expands the Intel® Agilex™ FPGA product offering with M-Series devices equipped with high fabric densities, in-package HBM2e memory, and DDR5 interfaces for high-memory bandwidth applications.

Learn more about the Intel® Agilex™ M-Series

featured paper

Introducing new dynamic features for exterior automotive lights with DLP® technology

Sponsored by Texas Instruments

Exterior lighting, primarily used to illuminate ground areas near the vehicle door, can now be transformed into a projection system used for both vehicle communication and unique styling features. A small lighting module that utilizes automotive-grade digital micromirror devices, such as the DLP2021-Q1 or DLP3021-Q1, can display an endless number of patterns in any color imaginable as well as communicate warnings and alerts to drivers and other vehicles.

Click to read more

featured chalk talk

WiFi 6 & 6E: Strengthening Smart Home Enablement

Sponsored by Mouser Electronics and Qorvo

Demands on WiFi are growing exponentially, and our aging standards and technology are struggling to keep up. Luckily, WiFi 6 and 6E represent a leap in WiFi capabilities for our systems. In this episode of Chalk Talk, Amelia Dalton chats with Tony Testa of Qorvo about the ins and outs of WiFi 6 and 6E with their increased speed, capacity, and efficiency.

Click here for more information about Qorvo Wi-Fi® 6 Solution