feature article
Subscribe Now

Open vs. Closed: A Design Dilemma

Open Design Philosophy Can Affect Both Cost and Reliability

Free and open technologies are certainly charming. They help alleviate the burden of development and allow you and your colleagues to focus on that important phrase, the “value add”: that part of your product that’s truly original.

Linux is the poster child for open software. It’s developed by the community and freely licensed to pretty much anyone who wants it. It’s a great field-leveler, allowing even small companies to develop big products without the big-OS headaches. Well, sort of.

Android is a nifty spinoff of Linux, with Google’s own bells and whistles added on. It’s been popular in the cellular handset business, running about neck-and-neck with Apple’s iPhones. (The numbers can be misleading: the iPhone is more popular than any single Android phone, but because there are several Android makers and only one Apple, Android itself is more popular than Apple’s iOS.) 

But Android’s openness is also its weakness. It’s easy to build a cheap Android phone, and that’s exactly the problem: some companies do build cheap Android phones. The failure rate for Android-based phones is twice as high as for other smartphones. Research firm WDS analyzed a year’s worth of tech-support calls to cell phone carriers (that’s 600,000 calls) and discovered that 14% of the calls related to hardware failures for Android-based phones. That compares to 6% for BlackBerry, 7% for iPhone, and 11% for Windows phones.

Guess which two smartphones have the lowest failure rates? The proprietary ones. And the two open-OS platforms have the highest failure rates. Worse than that, the cell phone carriers were spending as much as $2 billion per year repairing or replacing all those busted Android phones.

So what’s the lesson here? Not to use a freely licensed operating system? Build better hardware? Start a lucrative career repairing Android phones?

Part of the reason there are so many bad Android phones is because it’s allowed. We’re seeing free-market forces at work here. Companies build bad Android phones because they can; Google doesn’t prevent them. RIM and Apple, in contrast, control all their hardware manufacturing, and they set a higher bar for quality. Google (and Microsoft, though its Windows Phone program) exert less control over hardware configurations and quality. They’re more interested in proliferating their respective operating systems than in backing any single hardware design. That laissez-faire attitude leads to a wide array of hardware features, functions, and quality. One side believes in evolution while the other backs intelligent design.

Obviously, there’s nothing to prevent companies from making good Android-based phones, either, and many do. The forces of marketplace evolution will eventually weed out the bad ones and allow the good ones to flourish and reproduce, yielding future generations with even better characteristics. Google has also decided that a little divine intervention is in order. The company is now enforcing certain GUI standards so that future Android phones will at least look more or less the same. It’s also harmonizing its handset and tablet versions of Android (“Ice Cream Sandwich”) so that they look and act the same, too. The company felt that unbridled freedom was a bit too much of a good thing. Like a concerned shepherd, Google needed to thin the herd for the good of the flock. 

Does that make Android any less open? Not at all. It’s still got plenty of knobs and dials that developers can adjust, and it’s still (sort of) free. In exchange for Google handing you a complete and fully featured operating system, you merely have to agree to abide by certain rules. Nothing wrong with that. Whether the tighter reins will actually help the “open” Android overtake its “closed” competitors is still, well, an open question. 

One thought on “Open vs. Closed: A Design Dilemma”

  1. I consider that an embedded solution is the state of the art then, i.e., when you validate every feature (and the whole thing) and send it to the customer – here begins the issues. So even if you use an Open Design you have to close it at that exact moment, then you have a product. No doubt that enhancements can and should occur.
    Cheers.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Switch to Simple with Klippon Relay
In this episode of Chalk Talk, Amelia Dalton and Lars Hohmeier from Weidmüller explore the what, where, and how of Weidmüller's extensive portfolio of Klippon relays. They investigate the pros and cons of mechanical relays, the benefits that the Klippon universal range of relays brings to the table, and how Weidmüller's digital selection guide can help you choose the best relay solution for your next design.
Sep 26, 2023
26,490 views