feature article
Subscribe Now

Matter Versus Antimatter: ARM and Intel

In old Star Trek episodes we learn that antimatter reactors provide nearly unlimited power, but that they’re also curiously dangerous and unstable. And they make a cool blue glow. And hum. But that’s beside the point.

Here in the 21st century, we know that antimatter is a real thing, although the nifty space-warp engines aren’t here yet. We learn from our physics textbooks that matter/antimatter reactions produce an immense amount of power as the particles and antiparticles annihilate each other in a total conversion to energy.

Star Trek and Star Wars also teach us that the underdog usually wins. Against the seemingly insuperable forces of galactic empires or silicon-based beings, the little guy triumphs through sheer determination, wit, persistence, and valor. That and the unguarded exhaust port.

Intel’s exhaust port, so to speak, seems to be mobile devices. The tiny rebel alliance at ARM gained enough recruits to become the de facto standard processor for cell phones. To the indomitable imperial forces guarding the PC-processor market it must have seemed like an insignificant little beachhead. Why bother with little bitty cell phones when we control the ultimate force in the universe?

History has a funny way of punishing the inattentive. From little acorns do mighty oak trees grow, and that cell phone monopoly branched out into a whole range of portable and battery-powered devices. Meanwhile, the mighty PC sputtered and stalled and started looking a lot less important. Small, nimble fighters were overwhelming the x86 behemoth. The little guys might win after all.

Once polar opposites, ARM and Intel are now battling head to head. Already, ARM’s many licensees ship far more chips than Intel does. By that measure, ARM has already won. It’s become one of the most popular processor families in the known universe, bar none. Intel is still more profitable, but ARM has the swarm on its side.

Now ARM’s battle tech is getting more advanced, while at the same time, Intel’s is scaling back. The two warring factions are now battling on equal footing. ARM’s Cortex-A8 and –A9 are roughly equivalent to Intel’s Atom line, and the upcoming Cortex-A15 will soon become the pointy end of the spear. There’s now serious overlap between the ARM and Intel squadrons.

One contested territory is servers. ARM chips will probably never power PCs—at least, not PCs as we imagine them today. There’s simply too much entrenched x86 binary code for that to be a plausible outcome. The PC market is pretty flat anyway, making it an unattractive target, especially when there are juicier objectives ahead.

Servers have traditionally been just like PCs, but bigger. But, unlike PCs, servers run mostly Linux, HTML services, and Javascript, and these are easily ported to ARM. In fact, Javascript was designed specifically to be processor-independent (and suffers for it). And unlike PCs, servers are generally purchased by IT managers, not individuals. And IT managers are concerned about power consumption, cost of ownership, and vendor lock-in—all areas where ARM has a leg up on Intel. Almost a hundred different companies make ARM-based chips (versus two for x86 server processors), and a handful of them are gunning straight for servers.

For big server farms (think Google or your cable company), racks upon racks of server blades convert electricity to heat at an alarming rate. The power and air-conditioning bills can cost more than the hardware itself. For these customers, power efficiency is a big deal. Having a choice of processor vendors wouldn’t hurt, either. And ARM’s early multicore chips seem to deliver the goods in terms of performance, while still retaining some of their traditional power advantage. The wee little ARM processor may be outclassed (and incompatible) for PC applications, but gang enough of them together and they make a good server platform.

ARM has low cost on its side, but Intel has better manufacturing technology. Or, more precisely, Intel has manufacturing technology while ARM doesn’t. The x86 giant owns some of the very best silicon plants in the galaxy, while ARM’s massed troops make do with third-party foundries, which are always one or two generations behind Intel. You can’t trick physics: fabrication technology has more effect on power consumption than any other single factor. No matter how clever ARM’s CPU designs might be, they’ll always be handicapped if they’re built using second-rate silicon.

So far, Intel has a slight edge in server performance. Its Xeon processors are faster than Cortex-A9 clusters, even if they do cost a lot more and consume more electricity. We’ll see if upcoming A15-based chips tilt the balance of power.

Meanwhile, Intel is counterpunching with Atom, especially the Atom Z600 Moorestown chip set we saw in the October 5 issue. Moorestown is a bit too bulky for cell phones (it’s a four-chip set, minimum) but it’s dandy for tablets and other large-format portables. That puts it squarely in ARM’s home turf, just as Cortex-A9 trespasses on Intel territory. 

With comparable performance, the question then becomes: which software base do you want? The iPad uses an ARM processor to make it binary compatible with iPhone and some iPods, so Apple’s allegiance seems clear. An Atom-based tablet, on the other hand, could offer compatibility with PCs if you play your cards right. A truly portable PC based on Atom could reinvigorate the PC market and take advantage of the zillions of existing applications already out there.

Intel may have gotten off to a slow start, but its determination and dedication to the low-power embedded market are clear. Once they get that big ship turned around, it will become a mighty force in the universe. The current Atom E600 and Z600 are just the first wave; future x86 sorties will likely be more power-efficient and better integrated. Intel might surprise you; the new chips will be set to stun. 

Leave a Reply

featured blogs
Apr 14, 2021
Hybrid Cloud architecture enables innovation in AI chip design; learn how our partnership with IBM combines the best in EDA & HPC to improve AI performance. The post Synopsys and IBM Research: Driving Real Progress in Large-Scale AI Silicon and Implementing a Hybrid Clou...
Apr 13, 2021
The human brain is very good at understanding the world around us.  An everyday example can be found when driving a car.  An experienced driver will be able to judge how large their car is, and how close they can approach an obstacle.  The driver does not need ...
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

featured chalk talk

Silicon Lifecycle Management (SLM)

Sponsored by Synopsys

Wouldn’t it be great if we could keep on analyzing our IC designs once they are in the field? After all, simulation and lab measurements can never tell the whole story of how devices will behave in real-world use. In this episode of Chalk Talk, Amelia Dalton chats with Randy Fish of Synopsys about gaining better insight into IC designs through the use of embedded monitors and sensors, and how we can enable a range of new optimizations throughout the lifecycle of our designs.

Click here for more information about Silicon Lifecycle Management Platform