feature article
Subscribe Now

Not So Smart About Grids

ADD Triggers a Crash Course on Smart Grids

After a while, all press releases start to look alike. So I’m not sure what it was that caught my eye, but there it was: “ADD Semiconductor is first technology provider to achieve PRIME official certification.” Maybe it was the fact that some company I didn’t know anything about was the first to be certified on a standard I didn’t know anything about, perverse as that might sound.

I was soon to learn that there were many other things I didn’t know anything about.

A quick look showed that this had to do with smart grids and smart meters. Now, smart meters are something of a hot topic in California, where we’re making the transition from the comfortable old rotating-disk meters to something more modern. And more scary. It’s not happening without a fight. Some people fear the wireless signals. Others don’t trust the power company not to cheat on the billing with the new technology. (Some early billing goof-ups didn’t help matters one bit.)

This further piqued my interest: what does it take for a chip to be compliant with a smart-grid standard?

So I figured, let’s talk to these guys and see what I can learn. Now, they’re in Spain. Yes, there is good technology in Spain, but I have to say, it’s pretty rare that I’m discussing something like this over a connection to the Iberian peninsula.

We got to talking, and it was no time at all before a name got dropped that was very unfamiliar. My notes say, “Ivedrola?”

Now, I ask a lot of “stupid” questions in this job because, most of the time, they’re not stupid. But occasionally they are, and I end up looking like an idiot. Hazard of duty, I guess. But I try to reserve such situations until absolutely necessary, meaning I might wait a bit before exposing my ignorance.

In this case, I quietly did some googling while talking (yeah, I know, I’m too old to multi-task… shhhh… at least I wasn’t driving… or chewing gum…) to see if I could find the answer and act all nonchalant, as if I had known it all along. And, indeed, I found it: Iberdrola. A Spanish power company with which ADD was collaborating.

OK, wait a minute… of all the places to be driving a standard, Spain? I mean, no offense intended, I have nothing against Spain. And, actually, they’re known for some pretty forward-looking ideas on renewable power. (Well, forward-looking if they end up paying off, anyway.) But it just didn’t seem like the concentration of population you might think of as an early market target.

Smart metering ought to be an obvious killer app for a chip maker. Just think of the number of electric meters in the world. How can you miss? And so, with so many thicker population thickets further north in Europe, why start in Spain?

Call me “Grasshopper”: I have much to learn.

Here’s how you can miss: have a dozen or more ways of doing smart metering so that there is no one solution. Almost seems to take the “smart” out of “smart grid.”

Inter-operability for a grid that inter-connects different utilities seems like it would be an obvious smart-grid characteristic. Apparently it’s not. And there are several different technologies used for smart grids.

There are wireless technologies, both ones like Zigbee and full cell-phone technologies like GSM and GPRS. Cell technology in particular can communicate across reasonable distances in less dense areas where things are farther apart. Of course, this also means that the cell carrier enters the picture, complicating the business (and presumably adding cost). Wireless is generally preferred in North America.

But in Europe, with lots of dense cities having lots of close-knit apartment buildings with meters in basements encased in concrete, wireless doesn’t work so well. So they’re going more for the wireline approach.

Here again, though, they’re not all working together. Italy is using Echelon technology, which is also being used in Finland (and elsewhere). France is trying out a number of different wireline approaches to see what to settle on.

PRIME (I’ve seen “PRIME” spelled out as “Powerline Related Intelligent Metering Evolution” and as “PoweRline Intelligent Metering Evolution”) is one of the wireline approaches. It’s intended to provide true inter-operability, with orthogonal frequency division multiplexing (OFDM) signaling at 128 kbps to allow smarter apps to communicate over long runs of wire.

(At least three things I didn’t know anything about in that little paragraph…)

Meanwhile, Asia has its own mix of technologies.

And different power companies in North America are making different choices.

And suddenly this doesn’t seem like quite the killer app you might have imagined.

So how can a new standard and a new technology make inroads? The promise of inter-operability is a nice thing, but how many years has it been that we’ve had non-interoperable cell phone technologies? Inter-operability would be nice there too, but corporate facts on the ground tend to trump nice.

More appealing is cost. ADD in particular is suggesting that their solution is more cost-effective and efficient than competing ones. They’ve combined the MAC and PHY on a single SoC using elaborate DSP algorithms on a 180-nm digital process. This compares to competing 2-chip-plus-analog solutions.

Given the number of meters that need to be installed, low cost – and low power – but mostly low cost – can turn heads.

But assuming that at some point governments will put their feet down and insist on grids that cross borders, ADD is also participating in the OPEN meter project. Their goal is to develop metering standards for all kinds of utilities – electricity, gas, water, and heat – using existing technology standards where possible. Once this effort is complete, they will send it to IEEE to get the coveted IEEE imprimatur.

So, let’s recap. A company I knew nothing about used clever inexpensive technology I knew nothing about that was certified against a standard I knew nothing about so that it could be used by numerous power companies I knew nothing about to compete in a market I knew nothing about against other technologies I knew nothing about.

Good thing I didn’t ask that question about “Ivedrola.” I would have looked stupid.

 

More info:

ADD Semiconductor

PRIME Alliance

OPEN meter

Leave a Reply

featured blogs
Feb 21, 2024
In the dynamic landscape of automotive design, optimizing aerodynamics is key to achieving peak performance, fuel efficiency, vehicle range, and sustainability. Large eddy simulation (LES), a cutting-edge simulation technique, is reshaping how we approach automotive aerodynam...
Feb 15, 2024
This artist can paint not just with both hands, but also with both feet, and all at the same time!...

featured video

Tackling Challenges in 3DHI Microelectronics for Aerospace, Government, and Defense

Sponsored by Synopsys

Aerospace, Government, and Defense industry experts discuss the complexities of 3DHI for technological, manufacturing, & economic intricacies, as well as security, reliability, and safety challenges & solutions. Explore DARPA’s NGMM plan for the 3DHI R&D ecosystem.

Learn more about Synopsys Aerospace and Government Solutions

featured paper

How to Deliver Rock-Solid Supply in a Complex and Ever-Changing World

Sponsored by Intel

A combination of careful planning, focused investment, accurate tracking, and commitment to product longevity delivers the resilient supply chain FPGA customers require.

Click here to read more

featured chalk talk

Industrial Internet of Things (IIoT)
Sponsored by Mouser Electronics and Eaton
In this episode of Chalk Talk, Amelia Dalton and Mohammad Mohiuddin from Eaton explore the components, communication protocols, and sensing solutions needed for today’s growing IIoT infrastructure. They take a closer look at how Eaton's circuit protection solutions, magnetics, capacitors and terminal blocks can help you ensure the success of your next industrial internet of things design.
Jun 14, 2023
29,458 views