feature article
Subscribe Now

Not So Smart About Grids

ADD Triggers a Crash Course on Smart Grids

After a while, all press releases start to look alike. So I’m not sure what it was that caught my eye, but there it was: “ADD Semiconductor is first technology provider to achieve PRIME official certification.” Maybe it was the fact that some company I didn’t know anything about was the first to be certified on a standard I didn’t know anything about, perverse as that might sound.

I was soon to learn that there were many other things I didn’t know anything about.

A quick look showed that this had to do with smart grids and smart meters. Now, smart meters are something of a hot topic in California, where we’re making the transition from the comfortable old rotating-disk meters to something more modern. And more scary. It’s not happening without a fight. Some people fear the wireless signals. Others don’t trust the power company not to cheat on the billing with the new technology. (Some early billing goof-ups didn’t help matters one bit.)

This further piqued my interest: what does it take for a chip to be compliant with a smart-grid standard?

So I figured, let’s talk to these guys and see what I can learn. Now, they’re in Spain. Yes, there is good technology in Spain, but I have to say, it’s pretty rare that I’m discussing something like this over a connection to the Iberian peninsula.

We got to talking, and it was no time at all before a name got dropped that was very unfamiliar. My notes say, “Ivedrola?”

Now, I ask a lot of “stupid” questions in this job because, most of the time, they’re not stupid. But occasionally they are, and I end up looking like an idiot. Hazard of duty, I guess. But I try to reserve such situations until absolutely necessary, meaning I might wait a bit before exposing my ignorance.

In this case, I quietly did some googling while talking (yeah, I know, I’m too old to multi-task… shhhh… at least I wasn’t driving… or chewing gum…) to see if I could find the answer and act all nonchalant, as if I had known it all along. And, indeed, I found it: Iberdrola. A Spanish power company with which ADD was collaborating.

OK, wait a minute… of all the places to be driving a standard, Spain? I mean, no offense intended, I have nothing against Spain. And, actually, they’re known for some pretty forward-looking ideas on renewable power. (Well, forward-looking if they end up paying off, anyway.) But it just didn’t seem like the concentration of population you might think of as an early market target.

Smart metering ought to be an obvious killer app for a chip maker. Just think of the number of electric meters in the world. How can you miss? And so, with so many thicker population thickets further north in Europe, why start in Spain?

Call me “Grasshopper”: I have much to learn.

Here’s how you can miss: have a dozen or more ways of doing smart metering so that there is no one solution. Almost seems to take the “smart” out of “smart grid.”

Inter-operability for a grid that inter-connects different utilities seems like it would be an obvious smart-grid characteristic. Apparently it’s not. And there are several different technologies used for smart grids.

There are wireless technologies, both ones like Zigbee and full cell-phone technologies like GSM and GPRS. Cell technology in particular can communicate across reasonable distances in less dense areas where things are farther apart. Of course, this also means that the cell carrier enters the picture, complicating the business (and presumably adding cost). Wireless is generally preferred in North America.

But in Europe, with lots of dense cities having lots of close-knit apartment buildings with meters in basements encased in concrete, wireless doesn’t work so well. So they’re going more for the wireline approach.

Here again, though, they’re not all working together. Italy is using Echelon technology, which is also being used in Finland (and elsewhere). France is trying out a number of different wireline approaches to see what to settle on.

PRIME (I’ve seen “PRIME” spelled out as “Powerline Related Intelligent Metering Evolution” and as “PoweRline Intelligent Metering Evolution”) is one of the wireline approaches. It’s intended to provide true inter-operability, with orthogonal frequency division multiplexing (OFDM) signaling at 128 kbps to allow smarter apps to communicate over long runs of wire.

(At least three things I didn’t know anything about in that little paragraph…)

Meanwhile, Asia has its own mix of technologies.

And different power companies in North America are making different choices.

And suddenly this doesn’t seem like quite the killer app you might have imagined.

So how can a new standard and a new technology make inroads? The promise of inter-operability is a nice thing, but how many years has it been that we’ve had non-interoperable cell phone technologies? Inter-operability would be nice there too, but corporate facts on the ground tend to trump nice.

More appealing is cost. ADD in particular is suggesting that their solution is more cost-effective and efficient than competing ones. They’ve combined the MAC and PHY on a single SoC using elaborate DSP algorithms on a 180-nm digital process. This compares to competing 2-chip-plus-analog solutions.

Given the number of meters that need to be installed, low cost – and low power – but mostly low cost – can turn heads.

But assuming that at some point governments will put their feet down and insist on grids that cross borders, ADD is also participating in the OPEN meter project. Their goal is to develop metering standards for all kinds of utilities – electricity, gas, water, and heat – using existing technology standards where possible. Once this effort is complete, they will send it to IEEE to get the coveted IEEE imprimatur.

So, let’s recap. A company I knew nothing about used clever inexpensive technology I knew nothing about that was certified against a standard I knew nothing about so that it could be used by numerous power companies I knew nothing about to compete in a market I knew nothing about against other technologies I knew nothing about.

Good thing I didn’t ask that question about “Ivedrola.” I would have looked stupid.

 

More info:

ADD Semiconductor

PRIME Alliance

OPEN meter

Leave a Reply

featured blogs
May 18, 2022
Learn how award-winning ARC processor IP powers automotive functional safety tech, from automotive sensors to embedded vision systems, alongside AI algorithms. The post Award-Winning Processors Drive Greater Intelligence and Safety into Autonomous Automotive Systems appeared...
May 18, 2022
The Virtuoso Education Kit has just been released and now there is already a new kit available: The Organic Printed Electronics PDK Education Kit ! This kit also uses Virtuoso as the main Cadence... ...
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...
Apr 29, 2022
What do you do if someone starts waving furiously at you, seemingly delighted to see you, but you fear they are being overenthusiastic?...

featured video

Synopsys PPA(V) Voltage Optimization

Sponsored by Synopsys

Performance-per-watt has emerged as one of the highest priorities in design quality, leading to a shift in technology focus and design power optimization methodologies. Variable operating voltage possess high potential in optimizing performance-per-watt results but requires a signoff accurate and efficient methodology to explore. Synopsys Fusion Design Platform™, uniquely built on a singular RTL-to-GDSII data model, delivers a full-flow voltage optimization and closure methodology to achieve the best performance-per-watt results for the most demanding semiconductor segments.

Learn More

featured paper

Intel Agilex FPGAs Deliver Game-Changing Flexibility & Agility for the Data-Centric World

Sponsored by Intel

The new Intel® Agilex™ FPGA is more than the latest programmable logic offering—it brings together revolutionary innovation in multiple areas of Intel technology leadership to create new opportunities to derive value and meaning from this transformation from edge to data center. Want to know more? Start with this white paper.

Click to read more

featured chalk talk

NEUTRIK Fiber Optic Solutions

Sponsored by Mouser Electronics and Neutrik

The advantages and benefits of fiber optics are a mile long…but how can you design with them? How can you clean them? How do you repair them? Need a bit of a refresher? In this episode of Chalk Talk, Amelia Dalton chats with David Kuklinski from Neutrik about the OpticalCon advanced, OpticalCon LITE and Opticalcon DragonFly fiber optic solutions from Neutrik. They take a closer look at what benefits each of these solutions brings to the table, what kind of configurations are offered with each of these fiber optic solutions and what kind of performance you can expect when using them in your next design.

Click here for more information about Neutrik opticalCON® Fiber Optic Connector System