feature article
Subscribe Now

AMD’s Bobcat Challenges Atom

They say imitation is the sincerest form of flattery. If that’s so, Intel must be feeling pretty good right about now. Advanced Micro Devices (better known as AMD) has been producing terrific “imitation Intel” chips for two decades. The company’s latest chip design, code-named Bobcat, is AMD’s spin on Intel’s successful Atom chip.

Like Atom, Bobcat is a low-power x86 processor. Or, more accurately, it’s a low-power CPU core design. The actual chip is code-named Ontario, and it’s due out late this year. Ontario will be the first of many AMD chips to include the Bobcat CPU core, just as Intel produces several variations of its Atom processor.

Ontario will be different from Atom, though, because it will have integrated graphics. AMD acquired graphics-chip maker ATI a few years ago, and Ontario will be the first chip to include the AMD processor and the ATI graphics on the same chip. That makes Ontario more of a single-chip system than Atom is. It also makes it tough to compare the two chips side-by-side.

Setting aside differences in graphics and integration, the two CPUs inside look pretty similar. AMD’s Bobcat design is a dual-issue superscalar CPU with a 16-stage pipeline, 32KB instruction and data caches, a 512KB L2 cache, and full floating-point support. As far as the specifications go, Bobcat and Atom look pretty similar. Atom’s data cache is a bit smaller, at 24KB, but that’s about it. AMD isn’t saying how fast Bobcat (or the Ontario chip) will run, so we can’t compare clock speeds, performance, or power consumption.

We can compare features, though, and AMD clearly comes out ahead in that contest. With its graphics controller and north bridge peripherals on-chip, Ontario comes close to being a single-chip PC platform. Atom, on the other hand, is just a processor that requires a separate core-logic chip set and graphics controller—and Intel is justifiably not famous for its graphics. An Atom processor combined with the 945GC graphics chip consumes about 10W, most of which goes to the latter device. As a rough guess, Ontario probably consumes about one-third less power than Intel’s two-chip set, and it may deliver better graphics performance, too. We’ll know in a few months.

Could I Get One of Those?

Interestingly, AMD isn’t manufacturing the Ontario chip itself. Like most big semiconductor companies, AMD sold off its fabrication equipment and went “asset lite,” relying on third-party foundries instead. In AMD’s case, it spun off its manufacturing into a standalone company called Global Foundries. Most AMD chips have been built at GloFo ever since.

What’s odd is that Ontario won’t be one of them. Instead, that chip will be built at TSMC, the Taiwanese foundry usually associated with low-cost production. And Ontario’s design is almost all synthesizable RTL, not hand-crafted logic like most AMD processors. It’s all beginning to look very odd.

AMD’s decision to outsource Ontario’s manufacturing and to make Bobcat process-independent raises an interesting question: could the company be preparing to license Bobcat or Ontario as IP blocks? Could mere mortals be allowed to license AMD processors for their own ASICs?

It’s an interesting possibility, and one that Intel doesn’t seem interested in pursuing. And if Intel won’t license x86 processors, AMD is the logical alternative. After all, AMD doesn’t own any hyper-expensive fabs anymore, so it isn’t worried about keeping the production lines full. If AMD can make a few bucks by licensing Bobcat and/or Ontario to designers like you and me, it’s better than leaving money on the table. And it’s one business where Intel can’t (or won’t) compete. AMD would have the whole soft-x86 processor business to itself.

Apples and Orangutans

It’s ironic that AMD finds itself chasing Intel in the low-power game. AMD’s chips have nearly always been more power-efficient than its rival’s, but this time, the shoe is on the other foot. AMD typically gives up a few percentage points of performance versus Intel, with the payoff in lower power consumption and a lower price. Atom turned that equation around a few years ago, and now AMD is playing catch-up once again, but in the other direction. The low-power king finds itself getting pwned.

Ontario isn’t a direct competitor to Atom, but it’s a move in the same direction. Atom’s success surprised almost everyone (possibly even Intel), and it’s had the low-power x86 market all to itself ever since. Now that AMD is about to roll out Ontario and other Bobcat-based chips, Intel will finally have some competition at the low end of the market.

If all you want is a standalone processor, Atom is definitely the way to go. It’s in high-volume production, it’s very well supported, and it doesn’t come with any graphics or peripherals you don’t want. On the other hand, if you’re making a netbook or similar PC-like embedded system, AMD’s Ontario probably has most of what you want baked right in. It’s too soon to tell whether Ontario will be competitive in terms of performance, price, or power consumption. But it’s nice to have a new competitor nonetheless. 

Leave a Reply

featured blogs
Jul 28, 2021
The System Analysis Knowledge Bytes blog series will explore the capabilities and potential of the System Analysis tools offered by Cadence®. In addition to providing insight into the useful... [[ Click on the title to access the full blog on the Cadence Community site....
Jul 28, 2021
Here's a sticky problem. What if the entire Earth was instantaneously replaced with an equal volume of closely packed, but uncompressed blueberries?...
Jul 28, 2021
Hyperscale data centers are driving demand for high-bandwidth Ethernet protocols at speeds up to 800G to support HPC, AI, video streaming, and cloud computing. The post What's Driving the Demand for 200G, 400G, and 800G Ethernet? appeared first on From Silicon To Software....
Jul 9, 2021
Do you have questions about using the Linux OS with FPGAs? Intel is holding another 'Ask an Expert' session and the topic is 'Using Linux with Intel® SoC FPGAs.' Come and ask our experts about the various Linux OS options available to use with the integrated Arm Cortex proc...

featured video

Electromagnetic Analysis for High-Speed Communication

Sponsored by Cadence Design Systems

When your team is driving the future of breakthrough technologies like autonomous driving, industrial automation, and healthcare, you need software that helps meet approaching deadlines and increasingly high-performance demands. Learn how a system analysis solution can provide accurate 3D modeling, electromagnetic simulation, and electrothermal simulation at the chip, package, PCB, and system level.

Click to learn more

featured paper

Hyperconnectivity and You: A Roadmap for the Consumer Experience

Sponsored by Cadence Design Systems

Will people’s views about hyperconnectivity and hyperscale computing affect requirements for your next system or IC design? Download the latest Cadence report for how consumers view hyperscale computing’s impact on cars, mobile devices, and health.

Click to read more

featured chalk talk

Single Pair Ethernet

Sponsored by Mouser Electronics and Phoenix Contact

Single-pair Ethernet is revolutionizing industrial system design, with new levels of performance and simplicity. But, before you make the jump, you need to understand the options for cables, connectors, and other infrastructure. In this episode of Chalk Talk, Amelia Dalton chats with Lyndsey Walling of Phoenix Contact about the latest in single-pair Ethernet for industrial applications.

Click here for more information about Phoenix Contact Single Pair Ethernet (SPE) Connectors