feature article
Subscribe Now

Actel’s Radiation-Tolerant Flash Based FPGAs Now Qualified for Spaceflight Systems

MOUNTAIN VIEW, Calif., July 19, 2010–Reaffirming its leadership in the space market, Actel today announced the first fully qualified flash based FPGAs for space flight applications. Actel’s  RT ProASIC®3family successfully passed the extensive testing required for MIL-STD-883 Class B qualification. Building on its 17 year heritage and leadership of providing antifuse FPGAs for system critical applications, Actel ushers in a new paradigm in the space market with the qualification of its flash-based RT ProASIC3 devices.

The RT ProASIC3 FPGA family provides designers of spaceflight systems with reprogrammability for easy prototyping and design validation, while at the same time offering critical immunity to radiation induced configuration upsets. The new devices are based on the proven ProASIC3 flash architecture and are offered in two sizes. The 600,000 gate RT3PE600L and the three million gate RT3PE3000L are both offered in ceramic column grid array, ceramic land grid array, and ceramic quad flat-pack packages. RT ProASIC3 FPGAs can operate at a core voltage variable between 1.2 V for low power applications and 1.5 V for performance-driven designs.

The Flash Advantage

Unlike SRAM-based FPGAs and ASICs, Actel’s RT ProASIC3 family uses flash cells to store configuration information, presenting unique opportunities and advantages to designers of spaceflight electronic hardware, including:

  • Reprogrammable flash cells – Allow the designer to change the design of the FPGA without removing the FPGA from the board, making prototyping easier. The flash cells also enable in-flight reprogrammability, thereby extending mission life by re-purposing the hardware to incorporate updated algorithms. In addition to the benefits of reprogrammability, FPGAs inherently have zero NRE costs and offer fast time to market compared with ASICs.
  • Non-volatile flash cells – Flash-based FPGAs are standalone devices that enable code storage on-chip, removing the need for an external configuration device. This significantly reduces board space requirements. In addition, the flash cells do not exhibit single-event upsets in the presence of heavy ion radiation, eliminating the requirement of costly mitigation schemes to protect the design from loss of configuration.
  • “This milestone begins a new era for FPGAs in spaceflight applications,” said Ken O’Neill director, high-reliability marketing, Actel Corporation. “The inherent benefits of flash, specifically SEU immunity and reprogrammability for radiation-hardened applications, offer a compelling solution for engineers who are taking their applications into space.”

Availability

Actel’s RT ProASIC3 FPGAs are available in two densities, 600,000 and 3 million system gates, giving designers the opportunity to integrate medium or large-size designs into a single-chip solution. For further information, please contact Actel.

About Actel

Actel is the leader in low power FPGAs and mixed signal FPGAs, offering the most comprehensive portfolio of system and power management solutions. Power Matters. Learn more at www.actel.com.

Leave a Reply

Actel’s Radiation-Tolerant Flash Based FPGAs Now Qualified for Spaceflight Systems

MOUNTAIN VIEW, Calif., July 19, 2010–Reaffirming its leadership in the space market, Actel today announced the first fully qualified flash based FPGAs for space flight applications. Actel’s  RT ProASIC®3family successfully passed the extensive testing required for MIL-STD-883 Class B qualification. Building on its 17 year heritage and leadership of providing antifuse FPGAs for system critical applications, Actel ushers in a new paradigm in the space market with the qualification of its flash-based RT ProASIC3 devices.

The RT ProASIC3 FPGA family provides designers of spaceflight systems with reprogrammability for easy prototyping and design validation, while at the same time offering critical immunity to radiation induced configuration upsets. The new devices are based on the proven ProASIC3 flash architecture and are offered in two sizes. The 600,000 gate RT3PE600L and the three million gate RT3PE3000L are both offered in ceramic column grid array, ceramic land grid array, and ceramic quad flat-pack packages. RT ProASIC3 FPGAs can operate at a core voltage variable between 1.2 V for low power applications and 1.5 V for performance-driven designs.

The Flash Advantage

Unlike SRAM-based FPGAs and ASICs, Actel’s RT ProASIC3 family uses flash cells to store configuration information, presenting unique opportunities and advantages to designers of spaceflight electronic hardware, including:

  • Reprogrammable flash cells – Allow the designer to change the design of the FPGA without removing the FPGA from the board, making prototyping easier. The flash cells also enable in-flight reprogrammability, thereby extending mission life by re-purposing the hardware to incorporate updated algorithms. In addition to the benefits of reprogrammability, FPGAs inherently have zero NRE costs and offer fast time to market compared with ASICs.
  • Non-volatile flash cells – Flash-based FPGAs are standalone devices that enable code storage on-chip, removing the need for an external configuration device. This significantly reduces board space requirements. In addition, the flash cells do not exhibit single-event upsets in the presence of heavy ion radiation, eliminating the requirement of costly mitigation schemes to protect the design from loss of configuration.
  • “This milestone begins a new era for FPGAs in spaceflight applications,” said Ken O’Neill director, high-reliability marketing, Actel Corporation. “The inherent benefits of flash, specifically SEU immunity and reprogrammability for radiation-hardened applications, offer a compelling solution for engineers who are taking their applications into space.”

Availability

Actel’s RT ProASIC3 FPGAs are available in two densities, 600,000 and 3 million system gates, giving designers the opportunity to integrate medium or large-size designs into a single-chip solution. For further information, please contact Actel.

About Actel

Actel is the leader in low power FPGAs and mixed signal FPGAs, offering the most comprehensive portfolio of system and power management solutions. Power Matters. Learn more at www.actel.com.

Leave a Reply

featured blogs
Jul 25, 2025
Manufacturers cover themselves by saying 'Contents may settle' in fine print on the package, to which I reply, 'Pull the other one'”it's got bells on it!'...

featured paper

Agilex™ 3 vs. Certus-N2 Devices: Head-to-Head Benchmarking on 10 OpenCores Designs

Sponsored by Altera

Explore how Agilex™ 3 FPGAs deliver up to 2.4× higher performance and 30% lower power than comparable low-cost FPGAs in embedded applications. This white paper benchmarks real workloads, highlights key architectural advantages, and shows how Agilex 3 enables efficient AI, vision, and control systems with headroom to scale.

Click to read more

featured chalk talk

Wi-Fi Locationing: Nordic Chip-to-Cloud Solution
Location services enable businesses to gather valuable location data and deliver enhanced user experiences through the determination of a device's geographical position, leveraging specific hardware, software, and cloud services. In this episode of Chalk Talk, Amelia Dalton and Finn Boetius from Nordic Semiconductor explore the benefits of location services, the challenges that WiFi based solutions can solve in this arena, and how you can take advantage of Nordic Semiconductor’s chip-to-cloud locationing expertise for your next design.
Aug 15, 2024
59,679 views