feature article
Subscribe Now

Microcontrollers Hit the Airwaves

Want to make your 8-bit microcontroller talk over Wi-Fi like the big kids? Renesas and Redpine may have just the deal for you. The two companies have been collaborating behind the scenes to offer a combination deal of microcontroller-plus-Wi-Fi module designed to get you on the airwaves pronto.

Renesas provides the microcontrollers and Redpine provides the Wi-Fi know-how. Between them, they offer a goodie bag filled with everything you need to make 802.11n Wi-Fi work on an assortment of inexpensive microcontrollers.

Renesas – which was itself formed from the merger of Hitachi’s and Mitsubishi’s semiconductor divisions – now includes NEC as well. The red Renesas logo has turned blue to indicate the change. Redpine (which hasn’t merged with anyone) provides the Wi-Fi expertise.

The combo package comes in three levels of goodness: 8-bit, 32-bit, and 32-bit again. At the 8-bit level, Renesas pairs its R8C microcontrollers with Redpine’s Wi-Fi module, including the requisite firmware. The midrange RX processors offer 32-bit performance at about 100 MHz, again with Redpine modules. At the high end, Renesas offers its SuperH 32-bit RISC processors with – you guessed it – Redpine Wi-Fi modules. Naturally, there are the usual demo/evaluation boards available for cheap so you can experiment before you commit.

Why N?

Paradoxically, 802.11n can be more power-efficient than 802.11b or –g, according to Renesas. How is that possible? After all, 802.11n has faster data rates than 802.11b/g (that’s the whole point), and faster data rates generally equate to more RF energy. Laughing in the face of implacable physics, Renesas think it’s found the answer.

It’s precisely because 802.11n is faster than older Wi-Fi standards that it uses less power. You don’t need to turn the radio on as long, so you can shut off the most power-hungry portion of your Wi-Fi interface between data bursts. Squirting n bits from Point A to Point B takes less time with 802.11n, so you wind up using less energy. The greater speed is just a bonus.

The shorter, faster bursts also pay dividends in a crowded network with lots of chattering clients. Fewer collisions and negotiations mean less airtime wasted in overhead; more airtime spent squirting data.

It’s not a bad deal, and Wi-Fi is certainly an attractive feature for a lot of embedded designers. It’s a difficult interface to design yourself, and even more difficult to get certified. Buying a pre-made and pre-certified module makes good sense. As long as you’re comfortable using Renesas microcontrollers, it’s a quick and easy package. 

Leave a Reply

featured blogs
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....
Sep 30, 2022
Wow, September has flown by. It's already the last Friday of the month, the last day of the month in fact, and so time for a monthly update. Kaufman Award The 2022 Kaufman Award honors Giovanni (Nanni) De Micheli of École Polytechnique Fédérale de Lausanne...
Sep 29, 2022
We explain how silicon photonics uses CMOS manufacturing to create photonic integrated circuits (PICs), solid state LiDAR sensors, integrated lasers, and more. The post What You Need to Know About Silicon Photonics appeared first on From Silicon To Software....

featured video

Embracing Photonics and Fiber Optics in Aerospace and Defense Applications

Sponsored by Synopsys

We sat down with Jigesh Patel, Technical Marketing Manager of Photonic Solutions at Synopsys, to learn the challenges and benefits of using photonics in Aerospace and Defense systems.

Read the Interview online

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Medical Grade Temperature Sensing with the World's Smallest Surface Mount FIR Temperature IC

Sponsored by Mouser Electronics and Melexis

Temperature sensing has come a very long way in recent years. In this episode of Chalk Talk, Amelia Dalton chats with Doug Gates from Melexis about the latest innovation in medical grade temperature sensing. They take a closer look at the different kinds of applications that can use this kind of sensing technology, the role that emissivity and field view play in temperature sensing, and what sets the Melexis’ MLX90632 apart from other temperature sending solutions on the market today. 

Click here for more information about Melexis MLX90632 Infrared Temperature Sensors