feature article
Subscribe Now

Microcontrollers Hit the Airwaves

Want to make your 8-bit microcontroller talk over Wi-Fi like the big kids? Renesas and Redpine may have just the deal for you. The two companies have been collaborating behind the scenes to offer a combination deal of microcontroller-plus-Wi-Fi module designed to get you on the airwaves pronto.

Renesas provides the microcontrollers and Redpine provides the Wi-Fi know-how. Between them, they offer a goodie bag filled with everything you need to make 802.11n Wi-Fi work on an assortment of inexpensive microcontrollers.

Renesas – which was itself formed from the merger of Hitachi’s and Mitsubishi’s semiconductor divisions – now includes NEC as well. The red Renesas logo has turned blue to indicate the change. Redpine (which hasn’t merged with anyone) provides the Wi-Fi expertise.

The combo package comes in three levels of goodness: 8-bit, 32-bit, and 32-bit again. At the 8-bit level, Renesas pairs its R8C microcontrollers with Redpine’s Wi-Fi module, including the requisite firmware. The midrange RX processors offer 32-bit performance at about 100 MHz, again with Redpine modules. At the high end, Renesas offers its SuperH 32-bit RISC processors with – you guessed it – Redpine Wi-Fi modules. Naturally, there are the usual demo/evaluation boards available for cheap so you can experiment before you commit.

Why N?

Paradoxically, 802.11n can be more power-efficient than 802.11b or –g, according to Renesas. How is that possible? After all, 802.11n has faster data rates than 802.11b/g (that’s the whole point), and faster data rates generally equate to more RF energy. Laughing in the face of implacable physics, Renesas think it’s found the answer.

It’s precisely because 802.11n is faster than older Wi-Fi standards that it uses less power. You don’t need to turn the radio on as long, so you can shut off the most power-hungry portion of your Wi-Fi interface between data bursts. Squirting n bits from Point A to Point B takes less time with 802.11n, so you wind up using less energy. The greater speed is just a bonus.

The shorter, faster bursts also pay dividends in a crowded network with lots of chattering clients. Fewer collisions and negotiations mean less airtime wasted in overhead; more airtime spent squirting data.

It’s not a bad deal, and Wi-Fi is certainly an attractive feature for a lot of embedded designers. It’s a difficult interface to design yourself, and even more difficult to get certified. Buying a pre-made and pre-certified module makes good sense. As long as you’re comfortable using Renesas microcontrollers, it’s a quick and easy package. 

Leave a Reply

featured blogs
Jul 29, 2021
Circuit checks enable you to analyze typical design problems, such as high impedance nodes, leakage paths between power supplies, timing errors, power issues, connectivity problems, or extreme rise... [[ Click on the title to access the full blog on the Cadence Community sit...
Jul 29, 2021
Learn why SoC emulation is the next frontier for power system optimization, helping chip designers shift power verification left in the SoC design flow. The post Why Wait Days for Results? The Next Frontier for Power Verification appeared first on From Silicon To Software....
Jul 28, 2021
Here's a sticky problem. What if the entire Earth was instantaneously replaced with an equal volume of closely packed, but uncompressed blueberries?...
Jul 9, 2021
Do you have questions about using the Linux OS with FPGAs? Intel is holding another 'Ask an Expert' session and the topic is 'Using Linux with Intel® SoC FPGAs.' Come and ask our experts about the various Linux OS options available to use with the integrated Arm Cortex proc...

featured video

Vibrant Super Resolution (SR-GAN) with DesignWare ARC EV Processor IP

Sponsored by Synopsys

Super resolution constructs high-res images from low-res. Neural networks like SR-GAN can generate missing data to achieve impressive results. This demo shows SR-GAN running on ARC EV processor IP from Synopsys to generate beautiful images.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

Intel® Agilex™ FPGAs target IPUs, SmartNICs, and 5G Networks White Paper

Sponsored by Intel

Security challenges in the form of cyberattacks and data breaches loom ever larger as attacks on high-speed networks multiply. Massive amounts of data are at risk but so are physical resources, including critical physical infrastructure. Cryptography and authentication represent potent countermeasures. The latest members of the Intel® Agilex™ FPGA and SoC FPGA families feature hardened crypto blocks paired with MACsec soft IP to help mitigate the risks and limit the effects of these cyberattacks.

Click to read more

featured chalk talk

Meet the Latest Wireless Member of the DARWIN Family

Sponsored by Mouser Electronics and Maxim Integrated

May 21, 2021 -- Your next MCU needs to be more than just smart. It needs to be power-efficient, have ample memory, and industrial-grade security. In this episode of Chalk Talk, Amelia Dalton chats with Zach Metzinger of Maxim Integrated about the latest member of the DARWIN family with a new RISC-V co-processor.

Click here for more information about Maxim Integrated MAX32655 Low-Power Wireless Microcontroller