feature article
Subscribe Now

Flashing, Hetero Unions, and Changing Your Name

Flash Lite Adds Sex Appeal to Embedded Systems

A real-time operating system (RTOS) used to be just a tiny microkernel of code. Nowadays they’re growing into fully featured operating systems with their own development tools and third-party support. Just a few months ago, Intel paid $884 million in cash to acquire RTOS vendor Wind River Systems. Clearly, we’ve moved beyond a few kilobytes of microkernel code.

Another case in point is QNX, makers of the popular Neutrino RTOS. With help from desktop-software heavyweight Adobe, QNX ported Adobe’s ubiquitous Flash software to Neutrino. Now you can have Flash animation on your embedded systems, at least so long as you’re using Neutrino. It’s an interesting match.

Running Flash animation on a small embedded system is tough, as every iPhone user knows. Flash is big, complex, and resource-intensive. It’s not a trivial porting exercise, nor does it leave a light footprint on processors or memory. In short, you’ve got to really want it.

On the plus side, Flash has always been hardware- and software-independent. It’s not tied to the PC or Mac architecture, or to anybody’s processor. Like Java, Flash creates its own virtual machine, which makes it portable. But, like Java, that also makes it slow, fat, and complicated.

QNX calls its version Flash Lite (har, har), and it’s a streamlined version of the Flash we’re all familiar with from Web browsers. Still, it’s got most of the features any self-respecting embedded designer would want. Even in its “Lite” form, however, Flash requires some decent embedded horsepower. QNX recommends a 400-MHz or faster processor and a couple of megabytes of extra RAM beyond what your application normally requires. You might get away with a slower CPU if you have a small screen (less than 800×600, for example) or less memory if you know ahead of time exactly what Flash files you might be displaying.

As a rule of thumb, QNX says to plan on 1MB of RAM for the Flash Lite software itself, plus whatever space your animation requires. The good news is, .SWF (ShockWave) files are pretty small because they use mostly vector graphics and not bitmaps, so you’re probably looking at around 100KB, not megabytes, for downloaded content. The bad news is, Flash is heavily interpreted, so you’ll need to allocate lots of heap space. Figure on 10-15 times the size of your content in heap space, so that’s another 1.5MB of RAM for our 100KB example.

Oh, and it’s going to be slow. That is, unless your processor comes with some sort of OpenVG acceleration. As you can see, adding Flash Lite is not for the faint of heart or light of wallet. But those hardware requirements aren’t out of line for many high-end embedded systems, and the ability to download and run Flash animation will add serious, er, flash and dazzle. There are a lot of clever and creative Flash developers out there, and it will be nice to bring desktop-quality graphics and user interfaces to high-end embedded systems. Now if I could just get it working on my iPhone.

MIPS and Tensilica Make Nice

In other news, erstwhile competitors MIPS Technologies and Tensilica have decided it’s better to shake hands than make fists. For the first time, the two microprocessor-design companies have come up with a way for SoC designers to use both processors on the same chip. And why would said SoC designers want to do this? Because two heads are better than one.

MIPS is the second-place leader (behind ARM) in licensing 32-bit microprocessor designs. Its licensees’ chips are popular in video games, TVs, set-top boxes, and an uncountable multitude of other devices. MIPS is popular, in part, because it’s a straightforward RISC design, clean and simple. And fast. And with lots of software support.

Tensilica, on the other hand, designs specialty processors. Or, more precisely, its licensees design specialty processors: the Tensilica CPU architecture can be extended, molded, tweaked, and modified to suit the designer’s whims. It’s like a processor construction set, and Tensilica-based chips are like snowflakes: no two are alike. That makes Tensilica popular among designers who want a little something different, either because they’re deliberately obfuscating their design or because they need special processing capabilities.

Like peanut butter and chocolate, these two disparate microprocessor flavors go well together. The two companies have typically competed, but have now decided that it’s better to embrace diversity. In practical terms, this means that MIPS sales and support staff won’t give you a hard time for placing a Tensilica core alongside your MIPS processor, and vice versa. In fact, both companies point out that the two processors work pretty well together after all. Who knew?

In a typical embodiment, the Tensilica processor would act as a media accelerator while the MIPS processor runs the “mainstream” operating system or user code. Although MIPS offers an optional MIPS-3D extension on some of its processors, it’s not in the same league as a standalone processor like Tensilica’s. And given that MIPS has been popular in a lot of media-related consumer electronics, it’s a good thing the company is giving its blessing to such heterogeneous unions.

Technically, the two processors communicate over a shared system bus. They’re not coprocessors in the usual sense. That’s both good and bad. It’s good, because you can develop the two hardware cores more or less independently of one another, and you can create and debug the software separately. On the downside, they’re not tightly locked together with a private communications medium, so they’re permanently at arm’s length. Some couples are just not meant to be.

Of course, the two processors have entirely different instruction sets and programming models, so they’ll always be destined to run different code. This is definitely a “two-headed” type of multicore cooperation. Still, it’s nice to see two former competitors bury the hatchet and realize that today’s SoC designs incorporate a lot of features that aren’t necessarily available from a single source. Embedded design is all about solving problems, and it looks like MIPS and Tensilica have solved one for us.

AMCC Becomes Applied Micro

Meanwhile, fellow microprocessor maker AMCC has changed its name to Applied Micro. Actually it was always called Applied Micro (fully Applied Micro Circuits Corporation, hence AMCC) but now prefers the name spelled out.

That’s it? Well, the change was actually more extensive than that. The company also whacked the entire executive staff, replacing them mostly with Indian expats. The company still makes products primarily for the telecommunications and networking industries, though now it’s trying to be less of a boutique supplier and more of a broad-range company.

Applied Micro still uses PowerPC in most of its chips. If you recall, this is the company that took over IBM’s midrange 403- and 440-series microprocessors a few years ago. That acquisition has been working well for them, and the company has designed and built a number of its own unique PowerPC chips since that time. The 460EX, for example, runs at 1.2 GHz with an FPU, and its Titan processor is a 1.5-GHz dual-core design that is unique to Applied Micro. The engineers there clearly know what they’re doing. 

Leave a Reply

featured blogs
Jun 6, 2023
On June 1, Cadence president and CEO Anirudh Devgan rang the Nasdaq Stock Market opening bell in New York City to celebrate our 35th anniversary and our many accomplishments. Here are a few thoughts from KT Moore, vice president of Corporate Marketing, on this significant mil...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....
Jun 2, 2023
Explore the importance of big data analytics in the semiconductor manufacturing process, as chip designers pull insights from throughout the silicon lifecycle. The post Demanding Chip Complexity and Manufacturing Requirements Call for Data Analytics appeared first on New Hor...

featured video

Synopsys 224G & 112G Ethernet PHY IP Demos at OFC 2023

Sponsored by Synopsys

Watch this video of the Synopsys 224G & 112G Ethernet PHY IP demonstrating excellent performance and IP successful ecosystem interoperability demonstrations at OIF.

Learn More

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

ADI's ISOverse
In order to move forward with innovations on the intelligent edge, we need to take a close look at isolation and how it can help foster the adoption of high voltage charging solutions and reliable and robust high speed communication. In this episode of Chalk Talk, Amelia Dalton is joined by Allison Lemus, Maurizio Granato, and Karthi Gopalan from Analog Devices and they examine benefits that isolation brings to intelligent edge applications including smart building control, the enablement of Industry 4.0, and more. They also examine how Analog Devices iCoupler® digital isolation technology can encourage innovation big and small!  
Mar 14, 2023
10,871 views