feature article
Subscribe Now

Don’t Touch Me There

“As our rivets rub together, flashing sparks into the night.” Anything for a Tubes reference. Actually, the headline is relevant to today’s embedded designers because touch-sensitive interfaces are becoming hugely popular, just as they have been for millions of years. But now they’re popular in electronic gadgets, too. (Just as they have been for…. oh, never mind.) 

Cypress Semiconductor and Atmel are among the microcontroller companies making noise about their touch-enabled chips. These devices include interface logic for capacitive touch screens (sold separately), making it much easier for the average engineer to include this must-have feature. But there’s a lot more to touch than just having the right digital I/O.

That’s where Synaptics comes in. The company best known for supplying the touchpad in your laptop computer also makes a range of components, subassemblies, and software that go a step beyond the aforementioned microcontrollers. For designers in a hurry who don’t want to learn the nuances of a good touch interface (and really, what engineer does?) the Synaptics products are a good way to go.

For background, touch interfaces come in two basic varieties: resistive and capacitive. The resistive kind works by placing two thin membranes one atop the other, with a thin insulator (sometimes just air) in between them. You press down on the upper layer to make a connection between the two. We’ve all seen these in ATMs, industrial controllers, or weatherproof control panels. They’re reasonably tough and not difficult to design or use.

The downside of resistive interfaces is that you can’t very easily “click and drag” on them. They’re designed for firm button pushes, not gliding motions, so they’re naturally a bit coarse, and have well-defined buttons. You also can’t cover the touchpad (behind a sheet of glass, say) because you need to be able to push on it. You can’t multi-touch; one finger at a time, please. Finally, although you can silkscreen the upper layer to look nice, you can’t replace the graphics without physically replacing the upper layer of the interface (which you may have to do anyway when it wears out). 

Capacitive interfaces, on the other hand, don’t need physical pressure to close a switch – just ask any iPhone or iPod user. Same goes for most laptop touchpads: you can glide a finger across the pad without pressing down and it somehow senses your direction and intent. In contrast to resistive interfaces, you can (and should) cover the sensing parts with a thin protective material, either to keep out moisture or because you like a bit of friction. You can even put the whole thing behind glass or wrap it in latex, Plexiglas, or vinyl; just don’t make it too thick or you’ll spoil the sensation. And, of course, multiple fingers and multiple touches are perfectly acceptable.

The trick to this touchy-feely science is in the details. Resistive interfaces are nicely digital: you press down and you close a switch. Capacitive interfaces, in contrast, are all subtlety and refinement. They work by sensing the slight capacitive effects that your biology has on a weak electric field hovering over the surface of the touchpad. Wave a finger through that field and it’s possible – just barely – to detect the intrusion. Tracking motion is a convenient side effect, and sensing multiple fingers needs only a little bit more work.

But all this tactile goodness depends on your ability to sense a disturbance in the force above the touchpad. Paradoxically, it’s not that hard to detect the biological intrusion; what’s hard is ignoring all the other “noise” in the system. Given that most touchpads are on, or at least near, printed circuit boards full of microprocessors, oscillators, RF-generating traces, crystals, and other miniature antennas, it’s a wonder these things work at all. And therein lies the trick.

Synaptics is the first to admit that every capacitive-touch interface requires a lot of “tuning,” in their words. You can’t just slap the components down and expect them to work. You have to massage a component here, manipulate an interface there. Patience and understanding will eventually yield results. 

In their favor, the touchpad whisperers at Synaptics have years of experience doing just that. The commercial assumption is that some of that know-how rubs off on their products, to the benefit of touchpad virgins. When you’re ready for full-contact user interfacing, Synaptics has a few interesting products they can bring to the party. 

Leave a Reply

featured blogs
Feb 20, 2024
Graphics processing units (GPUs) have significantly transcended their original purpose, now at the heart of myriad high-performance computing applications. GPUs accelerate processes in fields ranging from artificial intelligence (AI) and machine learning to video editing and ...
Feb 15, 2024
This artist can paint not just with both hands, but also with both feet, and all at the same time!...

featured video

Tackling Challenges in 3DHI Microelectronics for Aerospace, Government, and Defense

Sponsored by Synopsys

Aerospace, Government, and Defense industry experts discuss the complexities of 3DHI for technological, manufacturing, & economic intricacies, as well as security, reliability, and safety challenges & solutions. Explore DARPA’s NGMM plan for the 3DHI R&D ecosystem.

Learn more about Synopsys Aerospace and Government Solutions

featured paper

How to Deliver Rock-Solid Supply in a Complex and Ever-Changing World

Sponsored by Intel

A combination of careful planning, focused investment, accurate tracking, and commitment to product longevity delivers the resilient supply chain FPGA customers require.

Click here to read more

featured chalk talk

Enabling IoT with DECT NR+, the Non-Cellular 5G Standard
In the ever-expanding IoT market, there is a growing need for private, low cost networks. In this episode of Chalk Talk, Amelia Dalton and Heidi Sollie from Nordic Semiconductor explore the details of DECT NR+, the world’s first non-cellular 5G technology standard. They investigate how this self-healing, decentralized, autonomous mesh network can help solve a variety of IoT connectivity issues and how Nordic is helping designers take advantage of DECT NR+ with their nRF91 System-in-Package family.
Aug 17, 2023
23,609 views