feature article
Subscribe Now

Embedded Everything

Reverse Engineering CES

The Embedded Technology game is one of those rare sports where the grand finale comes right at the beginning of the year.  Like NASCAR, where the premiere event, the Daytona 500, is the first race of the season… OK, sorry.  Really.  We promise to never use another NASCAR analogy again. 

Anyway, each January, our electronics season is kicked off with the world’s most spectacular display of the final fruits of our engineering efforts – the Consumer Electronics Show (CES) in Las Vegas.  With over 140,000 attendees, CES is one of the largest trade shows in the world.  The city of lights welcomes the hordes of CES attendees as guests of the city – by cranking hotel rates through the roof and milking money from the collective corporate expense coffers like there was no tomorrow.

The show itself, however, is a showcase like no other – with individual booths that are larger than many trade shows in our industry.  The sprawling LG “booth” alone is about the size of your average Best Buy store and has been packed to the seams with anxious attendees gawking at the new 3D displays and stylish designer monitors in assorted colors.  Everything from robotic toys to home security systems and doggie GPS is on display.  We’d estimate that if you set about walking systematically at maximum speed down every aisle of the collective show floors, you would not reach the end before the 4-day show expired.

As embedded systems engineers, most of us have oars in the water, propelling this gargantuan juggernaut – contributing the fruits of our labors to the vast ocean of technology that ultimately makes its way into the hands of everyday consumers.  Even those of us that work in more isolated areas like industrial automation and defense are not exempt.  There is a steady flow of cutting edge technologies like GPS, wireless, machine vision, motor control, and much more that migrate into the average consumer’s living room, automobile, briefcase, or pocket. 

At CES, we find the converse of the old adage… it seems that here, everything new is old again.  Bleeding-edge consumer products just about to storm the market are primarily built upon technologies that we engineers have long since written off as pedestrian.  For example, if you’re keeping up on the latest ARM and MIPS processor cores, you’d be underwhelmed to see most of the cool new gadgets using architectures that were “hot” four or five years ago in engineering circles.  By the time advanced IP gets designed into chip sets, verified, manufactured, and into the ASSP and OEM market, then those get incorporated into larger platforms being designed by systems houses, then finally those platforms get picked up by project teams building specific products (oh, and after waiting for all the software that goes with them to be debugged and proven) – well, then we’re almost ready for the regulatory approvals that precede the big marketing efforts that lead to the ultimate CES launch – several months before the products hit the shelves.

Nonetheless, the introduction of these technologies to the masses is a lynchpin in the circle of life for embedded systems.  Whatever technologies the fickle fingers of the proletariat embrace as their life-companions for entertainment, communication, and peace-of-mind get promoted to extreme mass production and a level of temporary technological permanence.  Get panned by the public, however, and all the bandwidth, battery life, and ease-of-use in the world won’t let your brilliant idea live to see the light of another year. 

Acceptance into popular consumer products is also the most important feedback loop in the life of a technology.  No matter how much QA you’ve done in the lab, no matter how much successful focus group and beta testing you’ve done, and no matter how well your cool gizmolet has performed in early-adopter products, you’ll gain a boatload of sometimes humbling real-world performance data when your work falls into the hands of the most damning taskmaster of all – the “general public.”  That embedded software that seemed so bulletproof during the months of testing can fall flat on its face when two million copies of little Henry try navigating the menus… while holding down the “volume up” and “contrast” keys simultaneously… with the battery just about to die…  in the bathtub.

Just about everything worth seeing at CES this year has the same basic components – an embedded computing system, a collection of interfaces to other devices, a set of  (often very stylish) interfaces to people, and some software that stitches the whole thing together.  Products are differentiated by myriad factors including technical things like battery life, processing power, the specific selection of human and machine interfaces, the level of intelligence and usability built into the embedded software, and form-factor, size, and weight.  As engineers, we’d like for these technical differentiators to be paramount, but that seldom is the case.  Consumers put as much or more emphasis on factors like aesthetics, brand loyalty, and exclusivity.  For many products, it’s not what the technology can do for you as much as what the technology says about you.  Just as the greatest artists of our time seldom get the most public acclaim, the most impressive technological feats of talented engineers often miss the boat on public acceptance for esoteric reasons that have little to do with how we engineers actually did our job.

Chances are, even if you’re an engineer working on products that launch at CES, you won’t get a trip request approved to come here.  Engineering travel budgets are typically reserved for more focused purposes like attendance at highly technical events where we can learn what’s coming next in the beginning of the pipeline, not what rolls out the other end after our engineering work is done.

We’re here this week, however, so keep an eye on our article and webcast sections for some valuable insight on what is and isn’t hot this year as the general public stretches its minds and wallets to embrace our latest creations. 

Leave a Reply

featured blogs
Dec 8, 2023
Read the technical brief to learn about Mixed-Order Mesh Curving using Cadence Fidelity Pointwise. When performing numerical simulations on complex systems, discretization schemes are necessary for the governing equations and geometry. In computational fluid dynamics (CFD) si...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Elevate Your Chip Design and Development with Synopsys.ai

Sponsored by Synopsys

Award-winning Synopsys.ai, the industry’s first full stack, AI-driven electronic design automation suite, offers AI-driven workflow optimization & data analytics solutions along with breakthrough generative AI capabilities for next-level chip design.

Click to read more

featured chalk talk

LEMBAS LTE/GNSS USB Modem from TE Connectivity
In today’s growing IoT design community, there is an increasing need for a smart connectivity system that helps both makers and enterprises get to market quickly. In this episode of Chalk Talk, Amelia Dalton chats with Jin Kim from TE Connectivity about TE’s LEMBAS LTE/GNSS USB Modem and how this plug-and-play solution can help jumpstart your next IoT design. They also explore the software, hardware, and data plan details of this solution and the design-in questions you should keep in mind when considering using the LEMBAS LTE/GNSS USB modem in your design.
Apr 20, 2023
27,556 views