feature article
Subscribe Now

Embedded Everything

Reverse Engineering CES

The Embedded Technology game is one of those rare sports where the grand finale comes right at the beginning of the year.  Like NASCAR, where the premiere event, the Daytona 500, is the first race of the season… OK, sorry.  Really.  We promise to never use another NASCAR analogy again. 

Anyway, each January, our electronics season is kicked off with the world’s most spectacular display of the final fruits of our engineering efforts – the Consumer Electronics Show (CES) in Las Vegas.  With over 140,000 attendees, CES is one of the largest trade shows in the world.  The city of lights welcomes the hordes of CES attendees as guests of the city – by cranking hotel rates through the roof and milking money from the collective corporate expense coffers like there was no tomorrow.

The show itself, however, is a showcase like no other – with individual booths that are larger than many trade shows in our industry.  The sprawling LG “booth” alone is about the size of your average Best Buy store and has been packed to the seams with anxious attendees gawking at the new 3D displays and stylish designer monitors in assorted colors.  Everything from robotic toys to home security systems and doggie GPS is on display.  We’d estimate that if you set about walking systematically at maximum speed down every aisle of the collective show floors, you would not reach the end before the 4-day show expired.

As embedded systems engineers, most of us have oars in the water, propelling this gargantuan juggernaut – contributing the fruits of our labors to the vast ocean of technology that ultimately makes its way into the hands of everyday consumers.  Even those of us that work in more isolated areas like industrial automation and defense are not exempt.  There is a steady flow of cutting edge technologies like GPS, wireless, machine vision, motor control, and much more that migrate into the average consumer’s living room, automobile, briefcase, or pocket. 

At CES, we find the converse of the old adage… it seems that here, everything new is old again.  Bleeding-edge consumer products just about to storm the market are primarily built upon technologies that we engineers have long since written off as pedestrian.  For example, if you’re keeping up on the latest ARM and MIPS processor cores, you’d be underwhelmed to see most of the cool new gadgets using architectures that were “hot” four or five years ago in engineering circles.  By the time advanced IP gets designed into chip sets, verified, manufactured, and into the ASSP and OEM market, then those get incorporated into larger platforms being designed by systems houses, then finally those platforms get picked up by project teams building specific products (oh, and after waiting for all the software that goes with them to be debugged and proven) – well, then we’re almost ready for the regulatory approvals that precede the big marketing efforts that lead to the ultimate CES launch – several months before the products hit the shelves.

Nonetheless, the introduction of these technologies to the masses is a lynchpin in the circle of life for embedded systems.  Whatever technologies the fickle fingers of the proletariat embrace as their life-companions for entertainment, communication, and peace-of-mind get promoted to extreme mass production and a level of temporary technological permanence.  Get panned by the public, however, and all the bandwidth, battery life, and ease-of-use in the world won’t let your brilliant idea live to see the light of another year. 

Acceptance into popular consumer products is also the most important feedback loop in the life of a technology.  No matter how much QA you’ve done in the lab, no matter how much successful focus group and beta testing you’ve done, and no matter how well your cool gizmolet has performed in early-adopter products, you’ll gain a boatload of sometimes humbling real-world performance data when your work falls into the hands of the most damning taskmaster of all – the “general public.”  That embedded software that seemed so bulletproof during the months of testing can fall flat on its face when two million copies of little Henry try navigating the menus… while holding down the “volume up” and “contrast” keys simultaneously… with the battery just about to die…  in the bathtub.

Just about everything worth seeing at CES this year has the same basic components – an embedded computing system, a collection of interfaces to other devices, a set of  (often very stylish) interfaces to people, and some software that stitches the whole thing together.  Products are differentiated by myriad factors including technical things like battery life, processing power, the specific selection of human and machine interfaces, the level of intelligence and usability built into the embedded software, and form-factor, size, and weight.  As engineers, we’d like for these technical differentiators to be paramount, but that seldom is the case.  Consumers put as much or more emphasis on factors like aesthetics, brand loyalty, and exclusivity.  For many products, it’s not what the technology can do for you as much as what the technology says about you.  Just as the greatest artists of our time seldom get the most public acclaim, the most impressive technological feats of talented engineers often miss the boat on public acceptance for esoteric reasons that have little to do with how we engineers actually did our job.

Chances are, even if you’re an engineer working on products that launch at CES, you won’t get a trip request approved to come here.  Engineering travel budgets are typically reserved for more focused purposes like attendance at highly technical events where we can learn what’s coming next in the beginning of the pipeline, not what rolls out the other end after our engineering work is done.

We’re here this week, however, so keep an eye on our article and webcast sections for some valuable insight on what is and isn’t hot this year as the general public stretches its minds and wallets to embrace our latest creations. 

Leave a Reply

featured blogs
May 17, 2021
In the beginning there was the airfoil. Or more specifically, in 1968 it became clear that something new was needed to help design supercritical airfoils and wings. Today there is serious planning... [[ Click on the title to access the full blog on the Cadence Community site...
May 13, 2021
Samtec will attend the PCI-SIG Virtual Developers Conference on Tuesday, May 25th through Wednesday, May 26th, 2021. This is a free event for the 800+ member companies that develop and bring to market new products utilizing PCI Express technology. Attendee Registration is sti...
May 13, 2021
Our new IC design tool, PrimeSim Continuum, enables the next generation of hyper-convergent IC designs. Learn more from eeNews, Electronic Design & EE Times. The post Synopsys Makes Headlines with PrimeSim Continuum, an Innovative Circuit Simulation Solution appeared fi...
May 13, 2021
By Calibre Design Staff Prior to the availability of extreme ultraviolet (EUV) lithography, multi-patterning provided… The post A SAMPle of what you need to know about SAMP technology appeared first on Design with Calibre....

featured video

Introduction to EMI

Sponsored by Texas Instruments

Conducted versus radiated EMI. CISPR-25 and CISPR-32 standards. High-frequency or low-frequency emissions. Designing a system to reduce EMI can be overwhelming, but it doesn’t have to be. Watch this video to get an overview of EMI causes, standards, and mitigation techniques.

Click here for more information

featured paper

How to solve two screenless TV design challenges

Sponsored by Texas Instruments

The new 4K display chipsets from DLP Products help make screenless TV setup easier and save cost by reducing the number of components required while also adding more advanced image-processing capabilities. The DLP471TP DMD and DLPC6540 controller for small designs and the DLP471TE DMD and DLPC7540 controller for designs above 1,500 lumens help deliver stunning ultra-high resolution displays to the market and take advantage of the rapid expansion in the availability of 4K content.

Click here to read

featured chalk talk

FPGAs Advance Data Acceleration in the Digital Transformation Age

Sponsored by Achronix

Acceleration is becoming a critical technology for today’s data-intensive world. Conventional processors cannot keep up with the demands of AI and other performance-intensive workloads, and engineering teams are looking to acceleration technologies for leverage against the deluge of data. In this episode of Chalk Talk, Amelia Dalton chats with Tom Spencer of Achronix about the current revolution in acceleration technology, and about specific solutions from Achronix that take advantage of leading-edge FPGAs, design IP, and even plug-and-play accelerator cards to address a wide range of challenges.

Click here for more information