feature article
Subscribe Now

Racing for the Gap

Altera and Synopsys go Structured

As suppliers jockey for position in offering products that hit the gap between the flexibility and risk-free design offered by FPGA and the performance and unit-cost advantages of cell-based ASIC, unlikely alliances are inevitable. In this case, ASIC design tool leader Synopsys is teaming with leading FPGA vendor Altera to jointly develop solutions for the design and production of Structured ASICs.

Altera has long touted their HardCopy structured ASIC as a clean cost-reduction path from an FPGA-based development, prototype, and early production platform to a cost-reduced, performance-optimized mask-programmed equivalent. Altera is betting that the advantages of programmable logic for early development will compel design teams to consider their structured ASIC offering.

The announcement this week says that Synopsys’s Galaxy design platform can now target Altera FPGA devices and their HardCopy structured ASIC counterparts, and that Synopsys Professional Services will support Altera’s HardCopy design centers. The partnership with Synopsys means that design teams already using Synopsys tools for ASIC design will have one less barrier to adopting an FPGA design methodology for future projects.

As Altera and other FPGA vendors diversify beyond their traditional applications and customer base, they are seeking ways to reduce unit cost, increase performance, and cut power consumption taking them closer to the capabilities of high-end ASIC while maintaining their substantial advantages in risk, schedule, flexibility, and design-cost. Altera’s strategy is somewhat unique among FPGA vendors as they are taking a mask-programmed approach similar to the ASIC suppliers rather than focusing on reducing the cost of a programmable logic fabric like rival Xilinx has with their Virtex-4 platform announced this week.

In going after the traditional ASIC market, Altera should gain leverage by partnering with Synopsys, whose synthesis and implementation tools are long time standards in the ASIC business. As ASIC designers look for alternatives to full cell-based implementation, the prospect of using their established design tools and methodologies, targeting an FPGA platform for development and prototyping, and cost-reducing with a low-risk, low-NRE path to a mask-programmed device should be quite attractive.

This also represents a move by Synopsys against synthesis rival Synplicity who has already staked a substantial claim and an early lead in the structured ASIC market. Synplicity already has a strong and visible track record in structured ASIC, partnering with silicon vendors and offering tools that leverage Synplicity’s FPGA experience and customer base. Structured ASIC represents one of the first markets where both companies are likely to compete on more equal footing as Synopsys has long been dominant in ASIC while Synplicity has dominated FPGA and neither has made a significant dent in the other’s dominance.

For both Synopsys and Altera, this agreement also represents a strategic alliance that helps them in diversifying into the others’ customer base in a complementary way. For a supplier of tools primarily to the cell-based ASIC market like Synopsys, it gives an opening to sell products to the larger, more diverse FPGA and structured ASIC market. For Altera, it represents cleaner access to the cell-based ASIC team by eliminating tool incompatibility as a barrier to adoption.

This assault on “the gap” is intensifying from all sides now, both in the silicon fabric space as well as the EDA space. More and more vendors are realizing that none of the current options squarely hits the sweet spot that many customers seek, and in the coming months we will see a variety of strategies to capture the lucrative eye of the custom logic hurricane.

Leave a Reply

featured blogs
Oct 23, 2020
The Covid-19 pandemic continues to impact our lives in both expected and unexpected ways. Unfortunately, one of the expected ways is a drop in charitable donations. Analysts predict anywhere from a 6% decrease '€“ with many planning for a bigger decline than that. Also, mor...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...
Oct 23, 2020
At 11:10am Korean time this morning, Cadence's Elias Fallon delivered one of the keynotes at ISOCC (International System On Chip Conference). It was titled EDA and Machine Learning: The Next Leap... [[ Click on the title to access the full blog on the Cadence Community ...

featured video

Demo: Inuitive NU4000 SoC with ARC EV Processor Running SLAM and CNN

Sponsored by Synopsys

See Inuitive’s NU4000 3D imaging and vision processor in action. The SoC supports high-quality 3D depth processor engine, SLAM accelerators, computer vision, and deep learning by integrating Synopsys ARC EV processor. In this demo, the NU4000 demonstrates simultaneous 3D sensing, SLAM and CNN functionality by mapping out its environment and localizing the sensor while identifying the objects within it. For more information, visit inuitive-tech.com.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

An engineer’s guide to autonomous and collaborative industrial robots

Sponsored by Texas Instruments

As robots are becoming more commonplace in factories, it is important that they become more intelligent, autonomous, safer and efficient. All of this is enabled with precise motor control, advanced sensing technologies and processing at the edge, all with robust real-time communication. In our e-book, an engineer’s guide to industrial robots, we take an in-depth look at the key technologies used in various robotic applications.

Click here to download the e-book

Featured Chalk Talk

Cloud Computing for Electronic Design (Are We There Yet?)

Sponsored by Cadence Design Systems

When your project is at crunch time, a shortage of server capacity can bring your schedule to a crawl. But, the rest of the year, having a bunch of extra servers sitting around idle can be extremely expensive. Cloud-based EDA lets you have exactly the compute resources you need, when you need them. In this episode of Chalk Talk, Amelia Dalton chats with Craig Johnson of Cadence Design Systems about Cadence’s cloud-based EDA solutions.

More information about the Cadence Cloud Portfolio