industry news
Subscribe Now

First Integrated Environmental Unit opens broad range of applications

  • High accuracy and versatility, very small footprint
  • Fastest temperature and humidity measurement in the market
  • Supports many emerging smartphone applications such as home automation control and innovative sport and fitness use cases
  • Adds floor level tracking to indoor navigation

LAS VEGAS–January 6, 2014–Bosch Sensortec announces a world first in sensor technology: the BME280 Integrated Environmental Unit combines sensors for pressure, humidity and temperature in a single package. This unique sensor has been developed to support a broad range of emerging high performance applications such as indoor navigation, home automation control, personalized weather stations and innovative sport and fitness applications. The precise altitude measurement function of the BME280 is a key requirement in applications such as indoor navigation with floor tracking where exceptional accuracy, low temperature drift and high resolution are needed. Additionally, the BME280 has a best-in-class response time of just one second for humidity determination, excellent ambient temperature measurement and low energy consumption.

More precise measurement at lowest power consumption
With a small footprint of just 2.5 x 2.5 mm2 and a height of 0.93 mm in a space-saving 8-pin LGA package, the sensor offers high design flexibility and is ideally suited for mobile devices with limited space such as smartphones, tablets, smart watches and electronic wristbands. Very low current consumption of only 3.6 µA (at 1 Hz) makes the BME280 Integrated Environmental Unit particularly suitable for battery-driven applications. Three power modes and separately configurable oversampling rates for pressure and temperature measurements allow designers to adapt the BME280 to a wide range of use cases.

The humidity sensor within the Integrated Environmental Unit measures relative humidity (0% to 100%) across a wide temperature range from -40°C to +85°C with a fast response time of less than 1 second. The humidity measurement accuracy is ±3% with a hysteresis of 2% or better, and the temperature reading accuracy is within 0.5°C.
The BME280 offers excellent overall precision. The relative accuracy of pressure readings is ±0.12 hPA, which equates to ±1 m (3.28 ft) of altitude difference at a resolution of 1.5 cm (0.59 inches). As a result, the BME280 is ideal for enhanced high performance GPS applications where it can be used to achieve more precise and faster position determination.

BME280 pressure measurement is very stable over temperature: The low temperature coefficient of 1.5 Pa/K, translates into an altitude stability over temperature measure of 12.6 cm/K (5.0 inches/K). This precision, along with its versatility and compactness, makes the BME280 ideal not only for innovative new applications but also to improve the exactness of existing ones. A few examples: the sensor can be used to implement indoor climate control applications for smartphones; it allows altitude profiling to be integrated into sports applications, enabling better training performance monitoring, and much more. As a connected sensor in the Internet of Things, the BME280 enables a host of further applications in home automation, smart energy, smart transportation and elderly care.

Bosch Sensortec also provides support software. The BSH1.0 algorithm enables developers to implement a precise temperature compensation function.

First samples of the BME280 to key development customers are available now.

Features and properties

  • Relative humidity range: 0 to 100 % at temperatures from -40°C to +85°C
  • Response time for humidity measurements: 1s
  • Humidity accuracy tolerance: ± 3 % relative humidity
  • Hysteresis: = 2 % relative humidity
  • Pressure range: 300 to 1100 hPa
  • Absolute pressure accuracy: typ ± 1hPa after soldering
  • Absolute temperature accuracy ±0.5°C at 25°C
  • Communication interfaces: I2C, SPI

Leave a Reply

featured blogs
Mar 27, 2024
The current state of PCB design is in the middle of a trifecta; there's an evolution, a revolution, and an exodus. There are better tools and material changes, there's the addition of artificial intelligence and machine learning (AI/ML), but at the same time, people are leavi...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

What are the Differences Between an Integrated ADC and a Standalone ADC?
Sponsored by Mouser Electronics and Microchip
Many designs today require some form of analog to digital conversion but how you implement an ADC into your design can make a big difference when it comes to accuracy and precision. In this episode of Chalk Talk, Iman Chalabi from Microchip and Amelia Dalton investigate the benefits of both integrated ADC solutions and standalone ADCs. They discuss the roles that internal switching noise, process technology, and design complexity play when choosing the right ADC solution for your next design.
Apr 17, 2023
38,854 views