industry news
Subscribe Now

Study Says 20nm SRAM Design Could Suffer from the Interplay Between Statistical Variability and Reliability

GLASGOW, Scotland, April 16, 2013 /PRNewswire/ — Gold Standard Simulations (GSS) revealed today that the interplay between the effects of statistical reliability and variability could adversely affect 20nm CMOS SRAM yield. The study also defined a new reliability simulation framework to predict variability and reliability impact that enhances yield.

The findings were presented in a paper jointly authored by GSS and the University of Glasgow Device Modelling Group at the International Physics Reliability Symposium in Monterey, CA.

The research highlights the importance of the interaction between trapped charges and statistical variability in the prediction of transistor and circuit lifetimes. It also describes the development of a unique simulation framework and a set of validated tools that could greatly enhance design and yield predictions in advanced technologies.

According to the study, the interplay amongst individual trapped charges with random discrete dopants (RDD), line edge roughness (LER) and metal gate granularity (MGG) in 20nm CMOS transistors leads to wide dispersions in transistors characteristics and to gigantic random telegraph noise (RTN) amplitudes that adversely affect SRAM yield and reliability. Even a single trapped electron can disturb the information stored in an SRAM memory cell.

The new simulation framework introduced today links atomistic-scale transistor reliability simulations and circuit level SRAM simulations that focus on the interaction of individual trapped charges with key transistor variability sources.

A newly-developed Kinetic Monte Carlo (KMC) reliability simulation engine, embedded in the GSS GARAND 3D ‘atomistic’ simulator, enables seamless statistical simulation of Bias Temperature Instability (BTI), Random Telegraph Noise (RTN) and Trap-Assisted Tunneling (TAT), all of which critically affect contemporary and future SRAM reliability and yield.

The new KMC engine handles the dynamics of random charge trapping and de-trapping in GARAND’s drift-diffusion simulation engine. This allows accurate physical modelling of the time evolution of bias and temperature-dependent transistor degradation statistics.

The results are then transferred into highly accurate time-dependant statistical compact models (using the GSS statistical compact model extractor Mystic). The GSS RandomSpice statistical circuit simulation engine captures the impact of statistical reliability on SRAM behaviour. This highly accurate process allows reliability-enhancing countermeasures to be implemented during the SRAM design process.

“The idea behind the research is not only to be able to predict failure times, but also to increase them. Hence the need for a new reliability simulation framework capable of transferring predictive atomistic simulations up to the circuit level in order to improve device and circuit reliability,” explained Dr. Asen Asenov, CEO Gold Standard Simulations.

About Gold Standard Simulations

Gold Standard Simulations is the world leader in simulation of statistical variability in nano-CMOS devices. The company’s services include the physical simulation of statistical variability, statistical compact model extraction and statistical circuit simulation using “push button” cluster-based technology. For more information please visit http://www.GoldStandardSimulations.com.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

High-Voltage Isolation for Robust and Reliable System Operation
In this episode of Chalk Talk, Amelia Dalton and Luke Trowbridge from Texas Instruments examine the benefits of isolation in high voltage systems. They also explore the benefits of TI’s integrated transformer technology and how TI’s high voltage isolations can help you streamline your design process, reduce your bill of materials, and ensure reliable and robust system operation.
Apr 27, 2023
39,182 views