editor's blog
Subscribe Now

A MEMS Autofocus

Change may be coming to the world of camera autofocus. Traditional smartphone autofocus uses a voice coil to move the lenses and change the focus. While this has obviously worked, a company called poLight thinks it could work better. In particular, faster and smaller.

They’ve fashioned a MEMS autofocus module. By goosing a couple of piezoelectric electrodes on a thin plate of glass, they can warp the glass – and therefore change the surface of a polymer block, turning it into a lens. The amount of actuation determines the curvature and hence the focus.

Drawing.png 

They claim that, unlike voice coil, this arrangement can withstand reflow solder temperatures, simplifying manufacturing and reducing cost. It also operates faster than a voice coil, improving performance for users.

You can find more on their website.

Leave a Reply

featured blogs
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...
Sep 25, 2020
Normally, in May, I'd have been off to Unterschleißheim, a suburb of Munich where historically we've held what used to be called CDNLive EMEA. We renamed this CadenceLIVE Europe and... [[ Click on the title to access the full blog on the Cadence Community site...

Featured Video

DesignWare MIPI C-PHY/D-PHY IP Performance at 24 Gbps

Sponsored by Synopsys

This video features the DesignWare MIPI C-PHY/D-PHY IP interoperating with an image sensor in C-PHY mode up to 3.5 Gsps per trio and D-PHY mode up to 4.5 Gbps per lane, available in FinFET processes for camera and display applications.

More information about Synopsys DesignWare MIPI C-PHY/D-PHY IP

Featured Paper

Designing highly efficient, powerful and fast EV charging stations

Sponsored by Texas Instruments

Scaling the necessary power for fast EV charging stations can be challenging. One solution is to use modular power converters stacked in parallel.

Learn More in our technical article

Featured Chalk Talk

Evaluation and Development Kits

Sponsored by Samtec

With signal integrity becoming increasingly challenging in today’s designs, interconnect is taking on a key role. In order to see how a particular interconnect solution will perform in our design, we really need hands-on evaluation of the technology. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns of Samtec about evaluation and development kits for high-speed interconnect solutions.

More information about Samtec Evaluation and Development Kits