editor's blog
Subscribe Now

A MEMS Autofocus

Change may be coming to the world of camera autofocus. Traditional smartphone autofocus uses a voice coil to move the lenses and change the focus. While this has obviously worked, a company called poLight thinks it could work better. In particular, faster and smaller.

They’ve fashioned a MEMS autofocus module. By goosing a couple of piezoelectric electrodes on a thin plate of glass, they can warp the glass – and therefore change the surface of a polymer block, turning it into a lens. The amount of actuation determines the curvature and hence the focus.

Drawing.png 

They claim that, unlike voice coil, this arrangement can withstand reflow solder temperatures, simplifying manufacturing and reducing cost. It also operates faster than a voice coil, improving performance for users.

You can find more on their website.

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

featured chalk talk

In-Chip Sensing and PVT Monitoring

Sponsored by Synopsys

In-chip monitoring can significantly alter the lifecycle management landscape. By taking advantage of modern techniques, today’s more complex designs can be optimized even after they are deployed. In this episode of Chalk Talk, Amelia Dalton chats with Stephen Crosher of Synopsys about silicon lifecycle management and how to take full advantage of the optimization opportunities available for scalability, reliability, and much more.

Click here for more information about in-chip monitoring and sensing