editor's blog
Subscribe Now

50% Deeper TSVs

We’ve been talking about through-silicon vias (TSVs) for years now, but 2.5D and 3D ICs are still trickling out at the high end.

Processing costs aside, one contributor to higher cost is the impact of TSVs on die size. While we debate the best ways to save a nanometer or two here and there, TSVs operate on a scale three orders of magnitude bigger: microns. And a good part of the reason is aspect ratio: at the current limit of 10:1 or so, then, if you want a 150-µm deep hole, you’re going to need to make it 15 µm wide. If we could improve the aspect ratio, then we could narrow down those TSVs and release some silicon area.

One of the main limiters to the aspect ratio is the ability to fill them cleanly with metal. In order to ensure that there aren’t voids along any of the surfaces, a seed layer is needed. And that seed layer has to be deposited in a well-controlled, uniform manner.

For the metals used as the seed, physical vapor deposition (PDV) – where vaporized material condenses on surfaces in a vacuum – tends to work best. But PVD also is most effective when coating a horizontal surface. Seeding a TSV is most decidedly not horizontal. You need to cover the sides and the bottom at equal rates.

TSV_Drawing.pngThat challenge notwithstanding, Tango Systems announced a couple of months ago that they have now moved the aspect-ratio bar to 15:1, using PVD. They did this through a combination of control over plasma density and vacuum as well as having magnetons that oscillate under the target. So that 15-µm-wide hole we needed to get 150 µm deep? Now it needs to be only 10 µm wide. (Why bother saving 10 nm when you can save 5000?)

Having bumped the limit by 50%, Tango thinks that this 15:1 bar will last for a while. Yes, achieving deeper might have some benefit, but at the same time as this is happening, wafers are also being thinned more, which reduces the needed depth.

TSVs are but the first application they envision for this new technology. They say that it can also have benefit for MEMS (there’s some long-term news pending there), improving the deposition of backside metals, and – their next target – providing EMI shielding.

You can find more in their announcement.

Leave a Reply

featured blogs
Jan 17, 2020
I once met Steve Wozniak, or he once met me (it's hard to remember the nitty-gritty details)....
Jan 17, 2020
[From the last episode: We saw how virtual memory helps resolve the differences between where a compiler thinks things will go in memory and the real memories in a real system.] We'€™ve talked a lot about memory '€“ different kinds of memory, cache memory, heap memory, vi...
Jan 16, 2020
While Samtec started as a connector company with a focus on two-piece, pin-and-socket board stacking systems, High-Speed Board Stacking connectors and High-Speed Cable Assemblies now make up a significant portion of our sales. To support development in this area, in December ...
Jan 16, 2020
Betting on Hydrogen-Powered Cars On-demand DRC within P&R cuts closure time in half for MaxLinear Functional Safety Verification For AV SoC Designs Accelerated With Advanced Tools Automating the pain out of clock domain crossing verification Mentor unpacks LVS and LVL iss...

Featured Video

RedFit IDC SKEDD Connector

Sponsored by Wurth Electronics and Mouser Electronics

Why attach a header connector to your PCB when you really don’t need one? If you’re plugging a ribbon cable into your board, particularly for a limited-use function such as provisioning, diagnostics, or testing, it can be costly and clunky to add a header connector to your BOM, and introduce yet another component to pick and place. Wouldn’t it be great if you could plug directly into your board with no connector required on the PCB side? In this episode of Chalk Talk, Amelia Dalton chats with Ben Arden from Wurth Electronics about Redfit, a slick new connector solution that plugs directly into standard via holes on your PCB.

Click here for more information about Wurth Electronics REDFIT IDC SKEDD Connector