editor's blog
Subscribe Now

50% Deeper TSVs

We’ve been talking about through-silicon vias (TSVs) for years now, but 2.5D and 3D ICs are still trickling out at the high end.

Processing costs aside, one contributor to higher cost is the impact of TSVs on die size. While we debate the best ways to save a nanometer or two here and there, TSVs operate on a scale three orders of magnitude bigger: microns. And a good part of the reason is aspect ratio: at the current limit of 10:1 or so, then, if you want a 150-µm deep hole, you’re going to need to make it 15 µm wide. If we could improve the aspect ratio, then we could narrow down those TSVs and release some silicon area.

One of the main limiters to the aspect ratio is the ability to fill them cleanly with metal. In order to ensure that there aren’t voids along any of the surfaces, a seed layer is needed. And that seed layer has to be deposited in a well-controlled, uniform manner.

For the metals used as the seed, physical vapor deposition (PDV) – where vaporized material condenses on surfaces in a vacuum – tends to work best. But PVD also is most effective when coating a horizontal surface. Seeding a TSV is most decidedly not horizontal. You need to cover the sides and the bottom at equal rates.

TSV_Drawing.pngThat challenge notwithstanding, Tango Systems announced a couple of months ago that they have now moved the aspect-ratio bar to 15:1, using PVD. They did this through a combination of control over plasma density and vacuum as well as having magnetons that oscillate under the target. So that 15-µm-wide hole we needed to get 150 µm deep? Now it needs to be only 10 µm wide. (Why bother saving 10 nm when you can save 5000?)

Having bumped the limit by 50%, Tango thinks that this 15:1 bar will last for a while. Yes, achieving deeper might have some benefit, but at the same time as this is happening, wafers are also being thinned more, which reduces the needed depth.

TSVs are but the first application they envision for this new technology. They say that it can also have benefit for MEMS (there’s some long-term news pending there), improving the deposition of backside metals, and – their next target – providing EMI shielding.

You can find more in their announcement.

Leave a Reply

featured blogs
Mar 1, 2024
A menu provides access to frequently used commands or features of an application or program. You can access menu items from the menu bar, typically located at the top of the application window, or a shortcut menu from the right mouse click. There are multiple ways to create c...
Mar 1, 2024
Explore standards development and functional safety requirements with Jyotika Athavale, IEEE senior member and Senior Director of Silicon Lifecycle Management.The post Q&A With Jyotika Athavale, IEEE Champion, on Advancing Standards Development Worldwide appeared first ...
Feb 28, 2024
Would it be better to ride the railways on people-powered rail bikes, or travel to the edge of space in a luxury lounge hoisted by a gigantic balloon?...

featured video

Tackling Challenges in 3DHI Microelectronics for Aerospace, Government, and Defense

Sponsored by Synopsys

Aerospace, Government, and Defense industry experts discuss the complexities of 3DHI for technological, manufacturing, & economic intricacies, as well as security, reliability, and safety challenges & solutions. Explore DARPA’s NGMM plan for the 3DHI R&D ecosystem.

Learn more about Synopsys Aerospace and Government Solutions

featured paper

Reduce 3D IC design complexity with early package assembly verification

Sponsored by Siemens Digital Industries Software

Uncover the unique challenges, along with the latest Calibre verification solutions, for 3D IC design in this new technical paper. As 2.5D and 3D ICs redefine the possibilities of semiconductor design, discover how Siemens is leading the way in verifying complex multi-dimensional systems, while shifting verification left to do so earlier in the design process.

Click here to read more

featured chalk talk

Electromagnetic Compatibility (EMC) Gasket Design Considerations
Electromagnetic interference can cause a variety of costly issues and can be avoided with a robust EMI shielding solution. In this episode of Chalk Talk, Amelia Dalton chats with Sam Robinson from TE Connectivity about the role that EMC gaskets play in EMI shielding, how compression can affect EMI shielding, and how TE Connectivity can help you solve your EMI shielding needs in your next design.
Aug 30, 2023
23,369 views