editor's blog
Subscribe Now

A HEMT Cool-Down

Heat has got to be one of the most annoying side-effects of doing useful electrical work. The more work we do, the more things heat up, changing the characteristics of the circuitry and, if we’re not careful, leading to early end-of-life or outright failure.

It’s heat that’s part of why we’ve gone to multicore instead of simply ratcheting up microprocessor clock frequencies forever. Greater dissipation is one reason we end up with power transistors that are larger than they need to be for electrical reasons. And when 3D ICs were first trotted out as an idea some years back, one of the immediate questions was how heat would be removed from the center of the stack.

We do lots of things to mitigate heat: elaborate cooling systems, heat spreaders in packages, and modified silicon designs to reduce thermal density. All of which add cost in one way or another.

Well, for one application, a different solution has been proposed. Gallium nitride (GaN) is a wide-bandgap material used for high-electron-mobility transistors (HEMTs) in high-power RF applications – radar, cellular base station radios, satellite radios, and the like. The GaN typically sits over a silicon substrate, with a transition layer to ease stresses due to mismatches in the crystal lattice spacing of the two materials.

These circuits have localized hot spots that have to be carefully managed (with heat flux that Element Six says rivals that of the sun). Metal is typically used to wick away heat, and we all know that copper is a good conductor of heat, topping out at about 400 W/mK. But we have looked at one material that is a far better heat conductor than copper: diamond. Diamond can conduct heat in the range of 1000-2000 W/mK.

Unlike copper, which uses electrons to conduct the heat away, diamond does so through vibrations of the crystal lattice – so-called phonons (a fictitious particle for analysis of crystal vibrations and their properties and propagation). So higher-quality crystals will spread heat better than high-defect crystals or polycrystalline depositions.

Element Six does sell diamond heat spreaders that can be included under standard GaN/silicon or GaN/SiC (silicon carbide) circuits, and they’ll help, but they place the diamond material some hundreds of microns away from the transistor gate, where the heat originates.

A better solution, they say, is to have a transistor consisting of GaN on a diamond substrate rather than a silicon substrate. The standard transition layer between silicon and GaN is also a barrier to a conductive path from gate to substrate, so they’ve eliminated that as well, replacing it with their own “secret sauce” of a transition layer.

By doing this, you’ve now got the transistor gate about 1 micron away, roughly tripling the heat dissipation.

GaN_on_Diamond_-_combined_2.png

 

Upper image courtesy Element Six; graph credit Professor Martin Kuball, Bristol University

Their actual production process leverages GaN/Si layers already in production. They put a handle wafer on top, flip them over, remove the silicon substrate and the transition layer, and then add their own transition layer and grow a polycrystalline diamond substrate. That substrate is strong, but it’s not thick enough for fab handling, so they temporarily affix another diamond wafer, which is eventually removed and re-used up to 10 times. (They’re working on a cheaper handle wafer solution for this last bit.)

GaN on Diamond allowed Triquint and Raytheon to achieve a three-fold improvement in power density as compared to GaN/SiC, allowing them to meet a challenge set by DARPA.

You can read more about the Raytheon achievement in their announcement.

Leave a Reply

featured blogs
Sep 16, 2021
I was quite happy with the static platform I'd created for my pseudo robot heads, and then some mad impetuous fool suggested servos. Oh no! Here we go again......
Sep 16, 2021
CadenceLIVE, Cadence's annual user conference, has been a great platform for Cadence technology users, developers, and industry experts to connect, share ideas and best practices solve design... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Accurate Full-System Thermal 3D Analysis

Sponsored by Cadence Design Systems

Designing electronics for the data center challenges designers to minimize and dissipate heat. Electrothermal co-simulation requires system components to be accurately modeled and analyzed. Learn about a true 3D solution that offers full system scalability with 3D analysis accuracy for the entire chip, package, board, and enclosure.

Click here for more information about Celsius Thermal Solver

featured paper

Detect. Sense. Control: Simplify building automation designs with MSP430™ MCU-based solutions

Sponsored by Texas Instruments

Building automation systems are critical not only to security, but worker comfort. Whether you need to detect, sense or control applications within your environment, the right MCU can make it easy. Using MSP430 MCUS with integrated analog, you can easily develop common building automation applications including motion detectors, touch keypads and e-locks, as well as video security cameras. Read more to see how you can enhance your building automation design.

Click to read more

featured chalk talk

RF Interconnect for Automotive Applications

Sponsored by Mouser Electronics and Amphenol RF

Modern and future automotive systems will put enormous demands on RF. We need reliable, high-bandwidth, low-latency, secure wireless connections between cars and infrastructure, from car to car, and within systems on each car. In this episode of Chalk Talk, Amelia Dalton chats with Owen Barthelmes and Kelly Freeman of Amphenol RF to talk about interconnects for these new, challenging automotive RF systems.

Click here for more information