editor's blog
Subscribe Now

A HEMT Cool-Down

Heat has got to be one of the most annoying side-effects of doing useful electrical work. The more work we do, the more things heat up, changing the characteristics of the circuitry and, if we’re not careful, leading to early end-of-life or outright failure.

It’s heat that’s part of why we’ve gone to multicore instead of simply ratcheting up microprocessor clock frequencies forever. Greater dissipation is one reason we end up with power transistors that are larger than they need to be for electrical reasons. And when 3D ICs were first trotted out as an idea some years back, one of the immediate questions was how heat would be removed from the center of the stack.

We do lots of things to mitigate heat: elaborate cooling systems, heat spreaders in packages, and modified silicon designs to reduce thermal density. All of which add cost in one way or another.

Well, for one application, a different solution has been proposed. Gallium nitride (GaN) is a wide-bandgap material used for high-electron-mobility transistors (HEMTs) in high-power RF applications – radar, cellular base station radios, satellite radios, and the like. The GaN typically sits over a silicon substrate, with a transition layer to ease stresses due to mismatches in the crystal lattice spacing of the two materials.

These circuits have localized hot spots that have to be carefully managed (with heat flux that Element Six says rivals that of the sun). Metal is typically used to wick away heat, and we all know that copper is a good conductor of heat, topping out at about 400 W/mK. But we have looked at one material that is a far better heat conductor than copper: diamond. Diamond can conduct heat in the range of 1000-2000 W/mK.

Unlike copper, which uses electrons to conduct the heat away, diamond does so through vibrations of the crystal lattice – so-called phonons (a fictitious particle for analysis of crystal vibrations and their properties and propagation). So higher-quality crystals will spread heat better than high-defect crystals or polycrystalline depositions.

Element Six does sell diamond heat spreaders that can be included under standard GaN/silicon or GaN/SiC (silicon carbide) circuits, and they’ll help, but they place the diamond material some hundreds of microns away from the transistor gate, where the heat originates.

A better solution, they say, is to have a transistor consisting of GaN on a diamond substrate rather than a silicon substrate. The standard transition layer between silicon and GaN is also a barrier to a conductive path from gate to substrate, so they’ve eliminated that as well, replacing it with their own “secret sauce” of a transition layer.

By doing this, you’ve now got the transistor gate about 1 micron away, roughly tripling the heat dissipation.

GaN_on_Diamond_-_combined_2.png

 

Upper image courtesy Element Six; graph credit Professor Martin Kuball, Bristol University

Their actual production process leverages GaN/Si layers already in production. They put a handle wafer on top, flip them over, remove the silicon substrate and the transition layer, and then add their own transition layer and grow a polycrystalline diamond substrate. That substrate is strong, but it’s not thick enough for fab handling, so they temporarily affix another diamond wafer, which is eventually removed and re-used up to 10 times. (They’re working on a cheaper handle wafer solution for this last bit.)

GaN on Diamond allowed Triquint and Raytheon to achieve a three-fold improvement in power density as compared to GaN/SiC, allowing them to meet a challenge set by DARPA.

You can read more about the Raytheon achievement in their announcement.

Leave a Reply

featured blogs
May 16, 2021
https://youtu.be/_wup2MSTVks Made on Communication Hill, San Jose (camera Carey Guo) Monday: Intel eASIC: Linley and DARPA Tuesday: Please Excuse the Mesh: CFD and Pointwise Wednesday: Linley:... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
May 13, 2021
Samtec will attend the PCI-SIG Virtual Developers Conference on Tuesday, May 25th through Wednesday, May 26th, 2021. This is a free event for the 800+ member companies that develop and bring to market new products utilizing PCI Express technology. Attendee Registration is sti...
May 13, 2021
Our new IC design tool, PrimeSim Continuum, enables the next generation of hyper-convergent IC designs. Learn more from eeNews, Electronic Design & EE Times. The post Synopsys Makes Headlines with PrimeSim Continuum, an Innovative Circuit Simulation Solution appeared fi...
May 13, 2021
By Calibre Design Staff Prior to the availability of extreme ultraviolet (EUV) lithography, multi-patterning provided… The post A SAMPle of what you need to know about SAMP technology appeared first on Design with Calibre....

featured video

Industry’s First USB4 Silicon Success

Sponsored by Synopsys

USB4 offers up to 40Gbps speeds for incredibly fast connections. Join Synopsys to see the first demonstration of USB4 IP in silicon, along with real TX eyes for DesignWare USB4, DisplayPort, and USB 3.x IP.

Click here for more information about DesignWare USB4 IP

featured paper

Bring a "Can-Do" Attitude to Your Industrial Drone Design

Sponsored by Maxim Integrated

Providing predictable and error-free communications, CAN bus networks have been the workhorse of the automobile industry for over thirty years. But they have recently found a new lease on life in other industrial applications, including drones. This design solution shows where and how CAN transceivers can be used in drone designs and explains why it is important that they come with high levels of electrical protection.

Click to read more

featured chalk talk

UWB: Because Location Matters

Sponsored by Mouser Electronics and Qorvo

While technologies like GPS, WiFi, and Bluetooth all offer various types of location services, none of them are well-suited to providing accurate, indoor/outdoor, low-power, real-time, 3D location data for edge and endpoint devices. In this episode of Chalk Talk, Amelia Dalton chats with Mickael Viot from Qorvo about ultra-wideband (UWB) technology, and how it can revolutionize a wide range of applications.

Click here for more information about Qorvo Ultra-Wideband (UWB) Technology