editor's blog
Subscribe Now

Sensor or Switch?

Honeywell recently released a new AMR (anisotropic magneto-resistive) sensor. We looked at this basic technology some time back, but there was another aspect of the release that confused me: the sensor was compared to a reed switch. And, at first glance, I don’t see a switch (=actuator) and a sensor as being the same thing.

For those of you steeped in this technology, what follows may seem rather basic and even obvious. But if you’re new to the space, then there’s some room to untangle some concepts that can be easily conflated.

Part of the issue has to do with being precise with terms that might be confused. If I think sloppily, I end up confusing a reed switch with a reed relay. What’s the difference? Well, a reed switch is simply a two-lead component. The switch connects the leads, presumably completing some circuit. That switch is actuated by a magnetic field (either to open or close it). That field is applied externally; exactly how depends on the application. Critically, there’s no magnetic component built into the switch.

So, in a way, the reed switch is a magnetic field detector. When the field exceeds a threshold, the reed moves, and you can think of this as a crude digital magnetic field sensor.

Now, if you include a magnetic coil along with the reed switch, adding two new leads, now you have a reed relay. This is much more of an actuator than a sensor, since it creates its own magnetic field. So switch and relay confusion can create sensor and actuator confusion.

Now let’s look at the AMR sensor schematic from the data sheet. From the outside, it may look just like a Hall Effect sensor, another sensor based on magnetic phenomena. (The field directions are apparently different, but I won’t dwell on that.)

Figure.png

 

On the left is the detector circuit. Because this constantly draws power, it must do so exceedingly sparingly. The original application for this (more on that in a moment) required no more than 500 nA; Honeywell has a couple of devices, one at 310 nA, the other at 360 nA. They claim this to be more than an order of magnitude more miserly than the lowest-power Hall Effect device, with greater sensitivity.

Once it detects the field, it flips the flop and the output value changes. Now… this output looks something like a beefy CMOS output, not like a wire in a reed switch. And if it drives a CMOS input, then this will simply look like a digital indicator with no DC load current. But if the output drives something that pulls current, then the pull-up (or the pull-down) acts as a switch that makes or breaks that circuit. In this way it more resembles a reed switch.

Here’s one other possible source of significant confusion: this is not like the magnetometer you may have in your phone. Your phone mag, like most sensors, provides continuous readings of the ambient magnetic environment. The phone can go in and interrogate the value at any time. By contrast, this AMR sensor is digital: either on or off. You can’t go in and measure the actual field. So it’s unlike many other sensors out there. That on/off characteristic is what makes it appear to be a switch – and contributes to the sensor/switch confusion.

So if you think of a reed switch as a switch that can be used as a sensor, then here you have a mag sensor that can be used as a switch.

By the way, that application I alluded to above? Apparently people were trying to monkey with electric meters using magnets to disrupt the metering. So AMR sensors (it takes two of them) are used to detect such anomalous magnets. Obviously, being in a meter, they have access to power, but it’s the power someone else is paying for, so it has to be tiny so as to be undetectable on their bill.

You can read more about Honeywell’s part in their release.

Leave a Reply

featured blogs
Sep 19, 2023
What's new with the latest Bluetooth mesh specification? Explore mesh 1.1 features that improve security and network efficiency, reduce power, and more....
Sep 20, 2023
Qualcomm FastConnect Software Suite for XR empowers OEMs with system-level optimizations for truly wireless XR....
Sep 20, 2023
The newest version of Fine Marine offers critical enhancements that improve solver performances and sharpen the C-Wizard's capabilities even further. Check out the highlights: γ-ReθTransition Model and Extension for Crossflow Modeling We have boosted our modeling capabi...
Sep 20, 2023
ESD protection analysis is a critical step in the IC design process; see how our full-chip PrimeESD tool accelerates ESD simulation and violation reporting.The post New Unified Electrostatic Reliability Analysis Solution Has Your Chip Covered appeared first on Chip Design...
Sep 10, 2023
A young girl's autobiography describing growing up alongside the creation of the state of Israel...

Featured Video

Chiplet Architecture Accelerates Delivery of Industry-Leading Intel® FPGA Features and Capabilities

Sponsored by Intel

With each generation, packing millions of transistors onto shrinking dies gets more challenging. But we are continuing to change the game with advanced, targeted FPGAs for your needs. In this video, you’ll discover how Intel®’s chiplet-based approach to FPGAs delivers the latest capabilities faster than ever. Find out how we deliver on the promise of Moore’s law and push the boundaries with future innovations such as pathfinding options for chip-to-chip optical communication, exploring new ways to deliver better AI, and adopting UCIe standards in our next-generation FPGAs.

To learn more about chiplet architecture in Intel FPGA devices visit https://intel.ly/45B65Ij

featured webinar

Secure the Future with Post-Quantum Cryptography on eFPGAs

Sponsored by QuickLogic

With the emergence of the quantum threat, the need for robust cybersecurity measures has never been more critical. Join us for an enlightening webinar that delves into the future of data protection with Xiphera's groundbreaking Post-Quantum Cryptography and QuickLogic's cutting-edge eFPGA technology. Join the webinar today and learn about the quantum threat and how it affects cybersecurity, Post-Quantum Cryptography (PQC) and how it works, how eFPGA can be used to gain maximum protection with PQC and the importance of PQC for digital design engineers, system security architects, and developers

Don't miss this timely webinar. Sign up today.

featured chalk talk

Enabling IoT with DECT NR+, the Non-Cellular 5G Standard
In the ever-expanding IoT market, there is a growing need for private, low cost networks. In this episode of Chalk Talk, Amelia Dalton and Heidi Sollie from Nordic Semiconductor explore the details of DECT NR+, the world’s first non-cellular 5G technology standard. They investigate how this self-healing, decentralized, autonomous mesh network can help solve a variety of IoT connectivity issues and how Nordic is helping designers take advantage of DECT NR+ with their nRF91 System-in-Package family.
Aug 17, 2023
4,606 views