editor's blog
Subscribe Now

A Navigation Demo

We’ve talked before about indoor and pedestrian navigation and the challenges they pose. As part of the ongoing industry effort to crack that nut, Movea recently announced a demonstration of their indoor navigation skills in France and South Korea. I was trying to parse their announcement carefully to catch the nuances of what they were claiming.

First of all, they claim that this is a “first,” but I think the key qualifier is that this is the first time their capability has been proven in a manner optimized for cellphones.

Second, at times it sounds like this was strictly a dead-reckoning solution, at times not. To be clear, this was a dead-reckoning-plus-map-matching (data fusion) solution. Specifically missing was the use of WiFi or other signals to be used as beacons. It was sensors and maps only.

Third, they mentioned collaboration with SCNF in France (the local rail operator) and a subsidiary of SK Telecom in South Korea. The latter in particular made me wonder whether this solution somehow required the participation of third parties (something I’ll address more fully in a piece tomorrow). The answer is that, fundamentally, no, no third-party involvement is required. What they got from these guys was maps of the train stations. This was the data for the data fusion component. At some point, all such facilities will have been mapped (and Google will probably have the maps), but that’s not the case yet.

So, rounding it out then, Movea demonstrated their platform, optimized for cellphones, which combines dead reckoning and map matching, by having people successfully navigate through busy train stations using their solution. Sounds like a pretty good result. You can get more info in their release.

Leave a Reply

featured blogs
Oct 27, 2021
ASIC hardware verification is a complex process; explore key challenges and bug hunting, debug, and SoC verification solutions to satisfy sign-off requirements. The post The Quest for Bugs: The Key Challenges appeared first on From Silicon To Software....
Oct 27, 2021
Cadence was recently ranked #7 on Newsweek's Most Loved Workplaces list for 2021 and #17 on Fortune's World's Best Workplaces list. Cadence received top recognition among thousands of other companies... [[ Click on the title to access the full blog on the Cadence Community s...
Oct 20, 2021
I've seen a lot of things in my time, but I don't think I was ready to see a robot that can walk, fly, ride a skateboard, and balance on a slackline....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Simplify building automation designs with MSP430

Sponsored by Texas Instruments

Smart building automation requires simple, flexible designs. With integrated, high-performance signal chain, MSP430 MCUs can enable high-accuracy motion detection, sensing and motor control to take performance and efficiency to the next level.

Click here for more information

featured paper

How to Double the Battery Life of Your Electrochemical Sensor Using a 1V Op Amp for Longer Runtime

Sponsored by Maxim Integrated (now part of Analog Devices)

In this Design Solution, a novel architecture for powering an ethanol sensor is presented. This architecture uses a MAX40108 1V op amp to extend the battery life by more than 40% by substantially reducing both the standby current and the average current in active mode.

Click to read more

featured chalk talk

In-Chip Sensing and PVT Monitoring

Sponsored by Synopsys

In-chip monitoring can significantly alter the lifecycle management landscape. By taking advantage of modern techniques, today’s more complex designs can be optimized even after they are deployed. In this episode of Chalk Talk, Amelia Dalton chats with Stephen Crosher of Synopsys about silicon lifecycle management and how to take full advantage of the optimization opportunities available for scalability, reliability, and much more.

Click here for more information about in-chip monitoring and sensing