editor's blog
Subscribe Now

Laying n-Type Epi

Dopants used to be there just for their doping. But stress is now an important aspect as well, which means the dopant atoms must be sized appropriately as compared to their silicon hosts. This has worked for p-type, where compressive stress is desired. Germanium, which is larger than silicon, compresses the silicon, increasing hole mobility.

n-type should be the reverse: tensile stress is needed, meaning smaller dopant atoms. Phosphorus and carbon are both smaller and can work. Sounds simple, right?

Well, apparently not so. The n-type dopants have a tendency to migrate, and so far increased border security hasn’t worked. OK, kidding. About the security, that is. The migration has remained to be solved.

At Semicon West, Applied Materials announced that they had found a way to create a stable n-type epi layer. How do they manage it, you ask? Keep asking… they’re not telling. There was a mention of millisecond anneals helping to tweak any vagabonds before they get too far. And whatever they do sets up a strict thermal budget, although not so low that it affects the back-end interconnect processing.

Details aside, if this is all working as promised, then we have more control over how to optimize the performance of n- and p-type devices. You can read more in their release.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

USB-C and USB Power Delivery Solutions

Sponsored by Analog Devices

Every electronic market is rapidly adopting the latest USB Type-C® and USB Power Delivery (USB-PD) specifications. The new USB Type-C cable and connector specifications dramatically simplify the way we interconnect and power electronic gadgets. With the proliferation of battery-operated devices for consumer, medical, automotive, and industrial applications, USB-C is increasingly becoming the preferred universal standard for charging and powering devices.

Click here to read more

Featured Chalk Talk

Easy Hardware and Software Scalability across Renesas RA MCUs

Sponsored by Mouser Electronics and Renesas

There are a bewildering number of choices when designing with an MCU. It can be a challenge to find one with exactly what your design requires - form factor, cost, power consumption, performance, features, and ease-of-use. In this episode of Chalk Talk, Amelia Dalton chats with Brad Rex of Renesas about the small-but-powerful Renesas RA family - a flexible and scalable collection of MCUs that may be exactly what your next project needs.

Click here for more information about Renesas Electronics RA Family Arm® Cortex® Microcontrollers