editor's blog
Subscribe Now

Laying n-Type Epi

Dopants used to be there just for their doping. But stress is now an important aspect as well, which means the dopant atoms must be sized appropriately as compared to their silicon hosts. This has worked for p-type, where compressive stress is desired. Germanium, which is larger than silicon, compresses the silicon, increasing hole mobility.

n-type should be the reverse: tensile stress is needed, meaning smaller dopant atoms. Phosphorus and carbon are both smaller and can work. Sounds simple, right?

Well, apparently not so. The n-type dopants have a tendency to migrate, and so far increased border security hasn’t worked. OK, kidding. About the security, that is. The migration has remained to be solved.

At Semicon West, Applied Materials announced that they had found a way to create a stable n-type epi layer. How do they manage it, you ask? Keep asking… they’re not telling. There was a mention of millisecond anneals helping to tweak any vagabonds before they get too far. And whatever they do sets up a strict thermal budget, although not so low that it affects the back-end interconnect processing.

Details aside, if this is all working as promised, then we have more control over how to optimize the performance of n- and p-type devices. You can read more in their release.

Leave a Reply

featured blogs
Dec 7, 2023
Semiconductor chips must be designed faster, smaller, and smarter'”with less manual work, more automation, and faster production. The Training Webinar 'Flow Wrapping: The Cadence Cerebrus Intelligent Chip Explorer Must Have' was recently hosted with me, Krishna Atreya, Princ...
Dec 6, 2023
Explore standards development and functional safety requirements with Jyotika Athavale, IEEE senior member and Senior Director of Silicon Lifecycle Management.The post Q&A With Jyotika Athavale, IEEE Champion, on Advancing Standards Development Worldwide appeared first ...
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

Enabling IoT with DECT NR+, the Non-Cellular 5G Standard
In the ever-expanding IoT market, there is a growing need for private, low cost networks. In this episode of Chalk Talk, Amelia Dalton and Heidi Sollie from Nordic Semiconductor explore the details of DECT NR+, the world’s first non-cellular 5G technology standard. They investigate how this self-healing, decentralized, autonomous mesh network can help solve a variety of IoT connectivity issues and how Nordic is helping designers take advantage of DECT NR+ with their nRF91 System-in-Package family.
Aug 17, 2023
13,827 views