editor's blog
Subscribe Now

Imperas Gen 2

Imperas has launched their second-generation virtual platform technology. In so doing, they’re adding more capability as well as restructuring their product offering.

We’ve been following their OVPworld approach for a few years, now, Dick Selwood having covered the technology back in 2009. What was then OVPsim has morphed into three “DEV” products – C*DEV, S*DEV, and M*DEV for microControllers, microprocessors (S=Standard), and multicore, respectively. (The * is pronounced “star.”) Each of these has the capability of generating a system model comprising any of the many model components in their library, and it comes with the simulator for executing that model.

They’ve now announced their M*SDK product, which layers new debugging and analytic capabilities on top of the DEV products. These are the typical kinds of probing and profiling tools that a software developer will want to use in optimizing code and/or platform execution. They include:

  • Code coverage
  • Memory and cache analysis
  • Execution profiling
  • Instruction and function tracing
  • Fault injection
  • Protocol verification
  • Exception and interrupt analysis
  • OS task tracing
  • OS scheduler analysis
  • Memory protection verification
  • Shared resource introspection

They’ve also extended their code morphing approach to include references to models of processors that come with their own ISS. In other words, it’s not just a model – it’s a model plus a tool. Such a tool is a slave to the overarching simulator, but can be called to deliver quick, accurate responses to simulation events. Called ToolMorphing, it not only creates the model code on the fly, but binds (for lack of a better word coming to mind right now) an associated tool for that model if there is one.

Meanwhile, the venerable OVPsim has been relegated to use as their academic product. It’s still around, but is no longer featured as a commercial focus.

You can find more information in their release.

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Maximizing High Power Density and Efficiency in EV-Charging Applications
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Amelia Dalton and Daniel Dalpiaz from Infineon talk about trends in the greater electrical vehicle charging landscape, typical block diagram components, and tradeoffs between discrete devices versus power modules. They also discuss choices between IGBT’s and Silicon Carbide, the advantages of advanced packaging techniques in both power discrete and power module solutions, and how reliability is increasingly important due to demands for more charging cycles per day.
Dec 18, 2023
16,739 views