editor's blog
Subscribe Now

Working Forward

You may recall that Vennsa’s OnPoint tool takes the results of verification and helps identify errors and possible causes. The tool’s early focus was on identifying suspect issues and letting you work from there.

Last year around DAC time, we noted that they took things a step further to suggest possible fixes (but you had to confirm whether they truly were fixes) and to do a better job of triage, clumping together things that might have a common cause.

But this is all reflected the backwards tracing that is typical of debug: find an issue and work back to possible causes. This is as opposed to forward debug, which, in its worst manifestation, consists of guessing at places to make changes and following the changes forward to see if they fix things. Couched in those terms, the forward approach sounds more like an act of desperation.

This year they have improved their “causality engine” to the point where you can start with proposed fixes and see the chain of logic from each proposed fix to the now-corrected problem point that demonstrates that the fix works. You can work forwards, except that now the specific locations of fixes and the values that fix them are provided by OnPoint rather than by a wish and a prayer.

It’s important to note that the “fixes” proposed aren’t circuit fixes; they’re just logic values (and times, in the case of state machines and such) that will remove the offending behavior. You still need to come up with a circuit change to implement the fix and then simulate it to ensure that you haven’t created a problem for yourself anywhere else.

One of the benefits of this is that the verification folks can now save the design folks lots of debug time. Before, a block might get handed back to a designers saying, “There’s a problem; here’s the test that failed.” Now that information can be accompanied by, “And here are a series of solutions from which you can choose.” Makes for much friendlier interactions.

You can find out more in their release.

 

Leave a Reply

featured blogs
Sep 21, 2021
Placing component leads accurately as per the datasheet is an important task while creating a package footprint symbol. As the pin pitch goes down, the size and location of the component lead play a... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Accurate Full-System Thermal 3D Analysis

Sponsored by Cadence Design Systems

Designing electronics for the data center challenges designers to minimize and dissipate heat. Electrothermal co-simulation requires system components to be accurately modeled and analyzed. Learn about a true 3D solution that offers full system scalability with 3D analysis accuracy for the entire chip, package, board, and enclosure.

Click here for more information about Celsius Thermal Solver

featured paper

Ultra Portable IO On The Go

Sponsored by Maxim Integrated (now part of Analog Devices)

The Go-IO programmable logic controller (PLC) reference design (MAXREFDES212) consists of multiple software configurable IOs in a compact form factor (less than 1 cubic inch) to address the needs of industrial automation, building automation, and industrial robotics. Go-IO provides design engineers with the means to rapidly create and prototype new industrial control systems before they are sourced and constructed.

Click to read more

featured chalk talk

SN1000 SmartNIC

Sponsored by Xilinx

Cloud providers face a variety of challenges with moving data from one place to another. In modern data centers, flexibility is a key consideration - on par with performance. Software-defined hardware acceleration offers a major breakthrough in flexibility. In this episode of Chalk Talk, Amelia Dalton chats with Kartik Srinivasan of Xilinx about the details of Smart NICs with the new Alveo SN1000 with composable hardware.

Click here for more information about the Alveo SN1000 - The Composable SmartNIC