editor's blog
Subscribe Now

Working Forward

You may recall that Vennsa’s OnPoint tool takes the results of verification and helps identify errors and possible causes. The tool’s early focus was on identifying suspect issues and letting you work from there.

Last year around DAC time, we noted that they took things a step further to suggest possible fixes (but you had to confirm whether they truly were fixes) and to do a better job of triage, clumping together things that might have a common cause.

But this is all reflected the backwards tracing that is typical of debug: find an issue and work back to possible causes. This is as opposed to forward debug, which, in its worst manifestation, consists of guessing at places to make changes and following the changes forward to see if they fix things. Couched in those terms, the forward approach sounds more like an act of desperation.

This year they have improved their “causality engine” to the point where you can start with proposed fixes and see the chain of logic from each proposed fix to the now-corrected problem point that demonstrates that the fix works. You can work forwards, except that now the specific locations of fixes and the values that fix them are provided by OnPoint rather than by a wish and a prayer.

It’s important to note that the “fixes” proposed aren’t circuit fixes; they’re just logic values (and times, in the case of state machines and such) that will remove the offending behavior. You still need to come up with a circuit change to implement the fix and then simulate it to ensure that you haven’t created a problem for yourself anywhere else.

One of the benefits of this is that the verification folks can now save the design folks lots of debug time. Before, a block might get handed back to a designers saying, “There’s a problem; here’s the test that failed.” Now that information can be accompanied by, “And here are a series of solutions from which you can choose.” Makes for much friendlier interactions.

You can find out more in their release.

 

Leave a Reply

featured blogs
Jan 26, 2022
With boards becoming more complex and lightweight at the same time, designing and manufacturing a cost-effective and reliable PCB has assumed greater significance than ever before. Inaccurate or... [[ Click on the title to access the full blog on the Cadence Community site. ...
Jan 26, 2022
PCIe 5.0 designs are currently in massive deployment; learn about the standard and explore PCIe 5.0 applications and the importance of silicon-proven IP. The post The PCI Express 5.0 Superhighway Is Wide, Fast, and Ready for Your Designs appeared first on From Silicon To Sof...
Jan 24, 2022
I just created a handy-dandy one-page Quick-Quick-Start Guide for seniors that covers their most commonly asked questions pertaining to the iPhone SE....

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

MAX22005 Universal Analog Input Enables Flexible Industrial Control Systems

Sponsored by Analog Devices

This application note provides information to help system engineers develop extremely precise, highly configurable, multi-channel industrial analog input front-ends by utilizing the MAX22005.

Click here to read more

featured chalk talk

Seamless Ethernet to the Edge with 10BASE-T1L Technology

Sponsored by Mouser Electronics and Analog Devices

In order to keep up with the breakneck speed of today’s innovation in Industry 4.0, we need an efficient way to connect a wide variety of edge nodes to the cloud without breaks in our communication networks, and with shorter latency, lower power, and longer reach. In this episode of Chalk Talk, Amelia Dalton chats with Fiona Treacy from Analog Devices about the benefits of seamless ethernet and how seamless ethernet’s twisted single pair design, long reach and power and data over one cable can solve your industrial connectivity woes.

Click here for more information about Analog Devices Inc. ADIN1100 10BASE-T1L Ethernet PHY