editor's blog
Subscribe Now

Shock Value

The area of sensors is tightly intertwined with that of energy harvesting, since many sensors are in far-flung installations that are hard to power.

Early this year we looked at a self-sufficient energy harvester that fed itself on vibrations; it was able to generate up to 35.8 µW of power given vibrations of 1 G. Recently, imec announced at IEDM average generation of 42 µW, with a record of 489 µW under optimal conditions.

The installation? This is specifically for tires, using the shocks that the tires experience as the source of energy. Not a remote setting, but still, if you want to put sensors in your tire – for pressure, for example – you really want a wireless, self-sufficient way to do it. The average power generated is at a driving speed of 70 km/h; this, they say, is enough to power a wireless sensor node. I guess that would mean that, at some (unspecified) slower speed, the node would start to fail – depending on batteries or caps or whatever was done to manage and condition the power.

The peak value can be attained if the vibration frequency is near the resonant frequency of the cantilever in the MEMS unit, which is 1011 Hz. Probably hard to drive the car in a manner that exploits that, but then again, if the node is working, then more power won’t make it work more, so it doesn’t matter. For that application, anyway.

More info can be found in their release.

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

featured chalk talk

Thermocouple Temperature Sensor Solution

Sponsored by Mouser Electronics and Microchip

When it comes to temperature monitoring and management, industrial applications can be extremely demanding. With temperatures that can range from 270 to 3000 C, consumer-grade temperature probes just don’t cut it. In this episode of Chalk Talk, Amelia Dalton chats with Ezana Haile of Microchip technology about using thermocouples for temperature monitoring in industrial applications.

More information about Microchip Technology MCP9600, MCP96L00, & MCP96RL00 Thermocouple ICs