editor's blog
Subscribe Now

Shock Value

The area of sensors is tightly intertwined with that of energy harvesting, since many sensors are in far-flung installations that are hard to power.

Early this year we looked at a self-sufficient energy harvester that fed itself on vibrations; it was able to generate up to 35.8 µW of power given vibrations of 1 G. Recently, imec announced at IEDM average generation of 42 µW, with a record of 489 µW under optimal conditions.

The installation? This is specifically for tires, using the shocks that the tires experience as the source of energy. Not a remote setting, but still, if you want to put sensors in your tire – for pressure, for example – you really want a wireless, self-sufficient way to do it. The average power generated is at a driving speed of 70 km/h; this, they say, is enough to power a wireless sensor node. I guess that would mean that, at some (unspecified) slower speed, the node would start to fail – depending on batteries or caps or whatever was done to manage and condition the power.

The peak value can be attained if the vibration frequency is near the resonant frequency of the cantilever in the MEMS unit, which is 1011 Hz. Probably hard to drive the car in a manner that exploits that, but then again, if the node is working, then more power won’t make it work more, so it doesn’t matter. For that application, anyway.

More info can be found in their release.

Leave a Reply

featured blogs
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...
Sep 25, 2020
Normally, in May, I'd have been off to Unterschleißheim, a suburb of Munich where historically we've held what used to be called CDNLive EMEA. We renamed this CadenceLIVE Europe and... [[ Click on the title to access the full blog on the Cadence Community site...

Featured Video

AI SoC Chats: IP for In-Memory / Near-Memory Compute

Sponsored by Synopsys

AI chipsets are data hungry and have high compute intensity, leading to potential power consumption issues. Join Synopsys Fellow Jamil Kawa to learn how in-memory or near-memory compute, 3D stacking, and other innovations can address the challenges of making chips think like the human brain.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

Helping physicians achieve faster, more accurate patient diagnoses with molecular test technology

Sponsored by Texas Instruments

Point-of-care molecular diagnostics (PoC) help physicians achieve faster, more accurate patient diagnoses and treatment decisions. This article breaks down how molecular test technology works and the building blocks for a PoC molecular diagnostics analyzer sensor front end system.

Read the Article

Featured Chalk Talk

Create Multi-Band Sensor Networks with the LaunchPad SensorTag Kit

Sponsored by Mouser Electronics and Texas Instruments

Doing IoT development today can involve a number of different communications standards. There is no “one size fits all” for wireless protocols. Every application has its own needs and constraints. In this episode of Chalk Talk, Amelia Dalton chats with Adrian Fernandez of Texas Instruments about the new LaunchPad SensorTag development kit - that can launch your IoT design regardless of what wireless standards you need.

Click here for more information about Texas Instruments LPSTK-CC1352R MCU LaunchPad Sensor Tag Kit