editor's blog
Subscribe Now

Shock Value

The area of sensors is tightly intertwined with that of energy harvesting, since many sensors are in far-flung installations that are hard to power.

Early this year we looked at a self-sufficient energy harvester that fed itself on vibrations; it was able to generate up to 35.8 µW of power given vibrations of 1 G. Recently, imec announced at IEDM average generation of 42 µW, with a record of 489 µW under optimal conditions.

The installation? This is specifically for tires, using the shocks that the tires experience as the source of energy. Not a remote setting, but still, if you want to put sensors in your tire – for pressure, for example – you really want a wireless, self-sufficient way to do it. The average power generated is at a driving speed of 70 km/h; this, they say, is enough to power a wireless sensor node. I guess that would mean that, at some (unspecified) slower speed, the node would start to fail – depending on batteries or caps or whatever was done to manage and condition the power.

The peak value can be attained if the vibration frequency is near the resonant frequency of the cantilever in the MEMS unit, which is 1011 Hz. Probably hard to drive the car in a manner that exploits that, but then again, if the node is working, then more power won’t make it work more, so it doesn’t matter. For that application, anyway.

More info can be found in their release.

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

How NV5, NVIDIA, and Cadence Collaboration Optimizes Data Center Efficiency, Performance, and Reliability

Sponsored by Cadence Design Systems

Deploying data centers with AI high-density workloads and ensuring they are capable for anticipated power trends requires insight. Creating a digital twin using the Cadence Reality Digital Twin Platform helped plan the deployment of current workloads and future-proof the investment. Learn about the collaboration between NV5, NVIDIA, and Cadence to optimize data center efficiency, performance, and reliability. 

Click here for more information about Cadence Data Center Solutions

featured chalk talk

Neutrik powerCON®: Twist and Latch Locking AC Power Connectors
Sponsored by Mouser Electronics and Neutrik
If your next design demands frequent connector mating and unmating and use in countries throughout the world, a twist and latch locking AC power connector would be a great addition to your system design. In this episode of Chalk Talk, Amelia Dalton and Fred Morgenstern from Neutrik explore the benefits of Neutrik's powerCON® AC power connectors, the electrical and environmental specifications included in this connector family, and why these connectors are a great fit for a variety of AV and industrial applications. 
Nov 27, 2023
30,576 views