editor's blog
Subscribe Now

MEMS over Copper

You may recall that there are various ways to approach CMOS-compatible MEMS. The one that yields the smallest die area is the CMOS-first process, where the CMOS circuits are built and then the MEMS layers are added afterwards. Done properly, it means the MEMS portions can be built right on top of the circuitry – this is, of course, what provides the space savings.

Imec has been doing a lot of work in this space, and in our earlier article, we pointed to their preference for poly-SiGe as a material for proof masses and such. But they had only tried building structures over older aluminum metallization layers.

More aggressive processes use copper metal, and so imec did a demonstration project to prove this out. Specifically, they built a piezoresistive pressure sensor over its readout circuitry, which used copper interconnect.

Bottom line: it worked. This presumably demonstrates that CMOS-first MEMS can smoothly transition over the aluminum-to-copper change at advanced nodes.

More detail in their release

Leave a Reply

featured blogs
May 14, 2025
If you're based in Coimbatore and you're looking for a bright and highly motivated ASIC/FPGA intern, I have great news!...

featured paper

How Google and Intel use Calibre DesignEnhancer to reduce IR drop and improve reliability

Sponsored by Siemens Digital Industries Software

Through real-world examples from Intel and Google, we highlight how Calibre’s DesignEnhancer maximizes layout modifications while ensuring DRC compliance.

Click here for more information

featured chalk talk

Power Modules and Why You Should Use Them in Your Next Power Design
In this episode of Chalk Talk, Amelia Dalton and Christine Chacko from Texas Instruments explore a variety of power module package technologies, examine the many ways that power modules can help save on total design solution cost, and the unique benefits that Texas Instruments power modules can bring to your next design.
Aug 22, 2024
43,231 views