editor's blog
Subscribe Now

MEMS over Copper

You may recall that there are various ways to approach CMOS-compatible MEMS. The one that yields the smallest die area is the CMOS-first process, where the CMOS circuits are built and then the MEMS layers are added afterwards. Done properly, it means the MEMS portions can be built right on top of the circuitry – this is, of course, what provides the space savings.

Imec has been doing a lot of work in this space, and in our earlier article, we pointed to their preference for poly-SiGe as a material for proof masses and such. But they had only tried building structures over older aluminum metallization layers.

More aggressive processes use copper metal, and so imec did a demonstration project to prove this out. Specifically, they built a piezoresistive pressure sensor over its readout circuitry, which used copper interconnect.

Bottom line: it worked. This presumably demonstrates that CMOS-first MEMS can smoothly transition over the aluminum-to-copper change at advanced nodes.

More detail in their release

Leave a Reply

featured blogs
May 7, 2021
In one of our Knowledge Booster Blogs a few months ago we introduced you to some tips and tricks for the optimal use of Virtuoso ADE Product Suite with our analog IC design videos . W e hope you... [[ Click on the title to access the full blog on the Cadence Community site. ...
May 7, 2021
Enough of the letter “P” already. Message recieved. In any case, modeling and simulating next-gen 224 Gbps signal channels poses many challenges. Design engineers must optimize the entire signal path, not just a specific component. The signal path includes transce...
May 6, 2021
Learn how correct-by-construction coding enables a more productive chip design process, as new code review tools address bugs early in the design process. The post Find Bugs Earlier Via On-the-Fly Code Checking for Productive Chip Design and Verification appeared first on Fr...
May 4, 2021
What a difference a year can make! Oh, we're not referring to that virus that… The post Realize Live + U2U: Side by Side appeared first on Design with Calibre....

featured video

Introduction to EMI

Sponsored by Texas Instruments

Conducted versus radiated EMI. CISPR-25 and CISPR-32 standards. High-frequency or low-frequency emissions. Designing a system to reduce EMI can be overwhelming, but it doesn’t have to be. Watch this video to get an overview of EMI causes, standards, and mitigation techniques.

Click here for more information

featured paper

Optimizing an OpenCL AI Kernel for the data center using Silexica’s SLX FPGA

Sponsored by Silexica

AI applications are increasingly contributing to FPGAs being used as co-processors in data centers. Silexica's newest application note shows how SLX FPGA accelerates an AI-related face detection design example, leveraging the bottom-up flow of Xilinx’s Vitis 2020.2 and Alveo U280 accelerator card.

Click to read

featured chalk talk

PolarFire SoC FPGA Family

Sponsored by Mouser Electronics and Microchip

FPGA SoCs can solve numerous problems for IoT designers. Now, with the growing momentum behind RISC-V, there are FPGA SoCs that feature RISC-V cores as well as low-power, high-security, and high-reliability. In this episode of Chalk Talk, Amelia Dalton chats with KK from Microchip Technology about the new PolarFire SoC family that is ideal for demanding IoT endpoint applications.

Click here for more information about Microchip Technology PolarFire® SoC FPGA Icicle Kit