editor's blog
Subscribe Now

Abrasive-Free CMP

When it comes to the kinds of integration we see today, it’s hard to find something more important than chemical/mechanical planarization (CMP) as an enabling technology. Before that, we could only use a couple layers of metal, and after that, the surface just got too irregular to support additional reliable layers. Given the ability to smooth it all out, we seem to be able to go layer after layer without stopping.

The whole chemical/mechanical thing suggests scrubbing with abrasives, along with some chemical etching to encourage things along. Which is more or less what happens.

This is, for us, a kind of sleepy little world that just, well, works. But then I saw an announcement of a new abrasive-free copper CMP process from Dow. Which makes it seem more like CP than CMP.

I asked for a bit more info: it wasn’t clear to me what abrasive-free CMP really meant. And it took a bit of time to get an answer – apparently this is secret stuff, and had to be wordsmithed carefully and approved. Their explanation is as follows:

The standard methodology uses an oxidizer to form an oxide layer on top of the copper; this is the portion that’s going to be removed. That’s the “C” part. Then there are abrasives that take away the copper oxide; that’s the “M” part. The bulk of the effect comes from the mechanical scrubbing.

By contrast, Dow’s focus is chemical: they dissolve the oxide layer rather than scrubbing it. Actually, it’s not even clear whether it’s an oxide that’s formed; they just refer to it as a protective layer: “Dow’s reactive liquid polishing formulations operate, in conjunction with the dynamic motion of a chemical mechanical polishing pad, to facilitate the removal of the copper through a repetitive process of protection and dissolution of copper on the surface of the wafer.”

The idea is partly that there’s less wear and tear on the whole system without abrasives, reducing costs and maintenance. But more significantly, it gets rid of the “dishing” problem – where wide areas with no metal get sunk down, a problem now addressed with fill metal. The planarization happens independent of the metal pattern. That could be a big deal…

More details are available in their original announcement

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

Featured Chalk Talk

Cadence Celsius Thermal Solver

Sponsored by Cadence Design Systems

Electrical-thermal co-simulation can dramatically improve the system design process, allowing thermal design adaptation to be done much earlier. The Cadence Celsius Thermal Solver is a complete electrical-thermal co-simulation solution for the full hierarchy of electronic systems from ICs to physical enclosures. In this episode of Chalk Talk, Amelia Dalton chats with CT Kao of Cadence Design Systems about how the Celsius Thermal Solver can help detect and mitigate thermal issues early in the design process.

More information about Celsius Thermal Solver