editor's blog
Subscribe Now

Abrasive-Free CMP

When it comes to the kinds of integration we see today, it’s hard to find something more important than chemical/mechanical planarization (CMP) as an enabling technology. Before that, we could only use a couple layers of metal, and after that, the surface just got too irregular to support additional reliable layers. Given the ability to smooth it all out, we seem to be able to go layer after layer without stopping.

The whole chemical/mechanical thing suggests scrubbing with abrasives, along with some chemical etching to encourage things along. Which is more or less what happens.

This is, for us, a kind of sleepy little world that just, well, works. But then I saw an announcement of a new abrasive-free copper CMP process from Dow. Which makes it seem more like CP than CMP.

I asked for a bit more info: it wasn’t clear to me what abrasive-free CMP really meant. And it took a bit of time to get an answer – apparently this is secret stuff, and had to be wordsmithed carefully and approved. Their explanation is as follows:

The standard methodology uses an oxidizer to form an oxide layer on top of the copper; this is the portion that’s going to be removed. That’s the “C” part. Then there are abrasives that take away the copper oxide; that’s the “M” part. The bulk of the effect comes from the mechanical scrubbing.

By contrast, Dow’s focus is chemical: they dissolve the oxide layer rather than scrubbing it. Actually, it’s not even clear whether it’s an oxide that’s formed; they just refer to it as a protective layer: “Dow’s reactive liquid polishing formulations operate, in conjunction with the dynamic motion of a chemical mechanical polishing pad, to facilitate the removal of the copper through a repetitive process of protection and dissolution of copper on the surface of the wafer.”

The idea is partly that there’s less wear and tear on the whole system without abrasives, reducing costs and maintenance. But more significantly, it gets rid of the “dishing” problem – where wide areas with no metal get sunk down, a problem now addressed with fill metal. The planarization happens independent of the metal pattern. That could be a big deal…

More details are available in their original announcement

Leave a Reply

featured blogs
Jan 17, 2022
Today's interview features Dajana Danilovic, an application engineer based near Munich, Germany. In this video, Dajana shares about her pathway to becoming an engineer, as well as the importance of... [[ Click on the title to access the full blog on the Cadence Community sit...
Jan 13, 2022
See what's behind the boom in AI applications and explore the advanced AI chip design tools and strategies enabling AI SoCs for HPC, healthcare, and more. The post The Ins and Outs of AI Chip Design appeared first on From Silicon To Software....
Jan 12, 2022
In addition to sporting a powerful processor and supporting Bluetooth wireless communications, Seeed's XIAO BLE Sense also boasts a microphone and a 6DOF IMU....

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

nanoPower Module Extends Battery Life in Space-Constrained Applications

Sponsored by Analog Devices

Designers can now increase battery life and reduce size in space-constrained IoT devices with a power module that features the lowest quiescent current compared to competitive solutions and uSLIC built-in inductor technology that reduces solution size by up to 37%.

Read Now

featured chalk talk

10X Faster Analog Simulation with PrimeSim Continuum

Sponsored by Synopsys

IC design has come a very long way in a short amount of time. Today, our SoC designs frequently include integrated analog, 100+ Gigabit data rates and 3D stacked DRAM integrated into our SoCs on interposers. In order to keep our heads above water in all of this IC complexity, we need a unified circuit simulation workflow and a fast signoff SPICE and FastSPICE architecture. In this episode of Chalk Talk, Amelia Dalton chats with Hany Elhak from Synopsys about how the unified workflow of the PrimeSim Continuum from Synopsys can help you address systematic and scale complexity for your next IC design.

Click to read more about PrimeSim Continuum