editor's blog
Subscribe Now

Take it Outside

As flexible as FPGAs are, you would think that you could stuff debug logic in there to probe around the internals and figure out what’s going on when you’ve got a problem.

And, if you’ve been paying attention, you’d say, “Yeah, Altera’s SignalTap and Xilinx’s ChipScope have been doing that for years.”

Well, Springsoft has just announced a ProbeLink product that sounds remarkably similar. What’s different?

The primary low-level differences are the following:

–          The trace data is stored off-chip on their board. This means it doesn’t use up on-chip memory to store traces, and you can store much more data.

–          The control is on their card, not inside the FPGA, also freeing up FPGA logic.

–          You can do multiple FPGAs: the SignalTap and ChipScope solutions only work on a single FPGA.

The idea is to be able to do more debug more quickly. Assuming your prototype covers more than one FPGA, it’s really slow to have to recompile the whole design for each different debug test you want to do. ProbeLink provides access to thousands of signals with no recompiles.

One of the ways it does this is by using a 100-MHz sampling clock (as long as the prototype system clock is less than 50 MHz) and does time-domain-multiplexing of signals on a sixteen-pin interface: the signals are actually traversing the cable at 800 MHz.

They’re also taking advantage of Xilinx’s ECO capability to let you probe different signals without completely recompiling.

Which brings up one point: at this time, they only support Xilinx. Altera support will be out soon, but the ECO thing is something they’re only “in discussion” about with Altera. So, for the time being, that’s a Xilinx-specific feature.

ProbeLink is tightly integrated with Verdi for visualizing the results.

More details in their release

Leave a Reply

featured blogs
Oct 27, 2021
ASIC hardware verification is a complex process; explore key challenges and bug hunting, debug, and SoC verification solutions to satisfy sign-off requirements. The post The Quest for Bugs: The Key Challenges appeared first on From Silicon To Software....
Oct 27, 2021
Cadence was recently ranked #7 on Newsweek's Most Loved Workplaces list for 2021 and #17 on Fortune's World's Best Workplaces list. Cadence received top recognition among thousands of other companies... [[ Click on the title to access the full blog on the Cadence Community s...
Oct 20, 2021
I've seen a lot of things in my time, but I don't think I was ready to see a robot that can walk, fly, ride a skateboard, and balance on a slackline....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Fast & Accurate 3D Object Detection for LiDAR with DesignWare ARC EV Processor IP

Sponsored by Synopsys

This demo, developed in partnership with Sensor Cortek, executes the FA3D algorithm on ARC EV7x processor with DNN engine. It shows 3D boxes rendered onto objects detected in the video frames, enabling the development of driver assistance systems.

Click here for more information

featured paper

System-Level Benefits of the Versal Platform

Sponsored by Xilinx

This white paper provides both a qualitative and quantitative analysis of Versal ACAP system-level capabilities for a host of markets ranging from cloud to wired networking and 5G wireless infrastructure. Learn how the Versal architecture delivers best-in-class performance/watt leadership over competing 10nm FPGA architectures in end-applications such as AI compute accelerator, 5G Massive MIMO, network accelerator, smart SSDs, and multi-terabit SmartPHY—supported with data that can be validated with public tools.

Click to read more

featured chalk talk

Thermocouple Temperature Sensor Solution

Sponsored by Mouser Electronics and Microchip

When it comes to temperature monitoring and management, industrial applications can be extremely demanding. With temperatures that can range from 270 to 3000 C, consumer-grade temperature probes just don’t cut it. In this episode of Chalk Talk, Amelia Dalton chats with Ezana Haile of Microchip technology about using thermocouples for temperature monitoring in industrial applications.

More information about Microchip Technology MCP9600, MCP96L00, & MCP96RL00 Thermocouple ICs