editor's blog
Subscribe Now

Take it Outside

As flexible as FPGAs are, you would think that you could stuff debug logic in there to probe around the internals and figure out what’s going on when you’ve got a problem.

And, if you’ve been paying attention, you’d say, “Yeah, Altera’s SignalTap and Xilinx’s ChipScope have been doing that for years.”

Well, Springsoft has just announced a ProbeLink product that sounds remarkably similar. What’s different?

The primary low-level differences are the following:

–          The trace data is stored off-chip on their board. This means it doesn’t use up on-chip memory to store traces, and you can store much more data.

–          The control is on their card, not inside the FPGA, also freeing up FPGA logic.

–          You can do multiple FPGAs: the SignalTap and ChipScope solutions only work on a single FPGA.

The idea is to be able to do more debug more quickly. Assuming your prototype covers more than one FPGA, it’s really slow to have to recompile the whole design for each different debug test you want to do. ProbeLink provides access to thousands of signals with no recompiles.

One of the ways it does this is by using a 100-MHz sampling clock (as long as the prototype system clock is less than 50 MHz) and does time-domain-multiplexing of signals on a sixteen-pin interface: the signals are actually traversing the cable at 800 MHz.

They’re also taking advantage of Xilinx’s ECO capability to let you probe different signals without completely recompiling.

Which brings up one point: at this time, they only support Xilinx. Altera support will be out soon, but the ECO thing is something they’re only “in discussion” about with Altera. So, for the time being, that’s a Xilinx-specific feature.

ProbeLink is tightly integrated with Verdi for visualizing the results.

More details in their release

Leave a Reply

featured blogs
Apr 12, 2024
Like any software application or electronic gadget, software updates are crucial for Cadence OrCAD X and Allegro X applications as well. These software updates, often referred to as hotfixes, include support for new features and critical bug fixes made available to the users ...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Portenta C33
Sponsored by Mouser Electronics and Arduino and Renesas
In this episode of Chalk Talk, Marta Barbero from Arduino, Robert Nolf from Renesas, and Amelia Dalton explore how the Portenta C33 module can help you develop cost-effective, real-time applications. They also examine how the Arduino ecosystem supports innovation throughout the development lifecycle and the benefits that the RA6M5 microcontroller from Renesas brings to this solution.  
Nov 8, 2023
20,928 views