editor's blog
Subscribe Now

28-nm NVM Lives

A couple years ago we looked at the possibility that non-volatile memory (NVM) might have a limited future. Given that the main physical mechanism of concern at the time was floating gate leakage through excessive tunneling, it certainly seems to give an edge to the one-time programmable (OTP) guys when it comes to migration to advanced nodes. They use anti-fuses instead of floating gates, and so aren’t limited by tunneling through ultra-thin oxide.

Last week Kilopass announced that they had a successful test chip using TSMC’s 28-nm process with high-κ metal gates. The process wasn’t altered in any way to implement the NVM cells. They also claim to have demonstrated scalability to 22 nm, and Kilpass’s Linh Hong says they’re in “very very early development” of 20-nm cells.

This is the world’s first 28-nm NVM cell, so, coupled with the projections going forward, it would look like there’s no premature end to this particular technology.

The release has more details…

Leave a Reply

featured blogs
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Designing with GaN? Ask the Right Questions about Reliability

Sponsored by Mouser Electronics and Texas Instruments

As demands for high-performance and low-cost power conversion increases, gallium nitride offers several intriguing benefits for next generation power supply design. In this episode of Chalk Talk, Amelia Dalton and Sandeep Bahl from Texas Instruments investigate the what, why and how of gallium nitride power technology. They take a closer look at the component level and in-system reliability for TI’s gallium nitride power solutions and why GaN might just be the perfect solution for your next power supply design.

Click here for more information about Texas Instruments Gallium Nitride (GaN)