editor's blog
Subscribe Now

Sensing the Squish

We’re used to touch being about locating one or more fingers or items on a surface. This is inherently a 2D process. Although much more richness is being explored for the long-term, one third dimension that seems closer in is pressure: how hard are we pushing down, and can we use that to, for instance, grab an object for dragging?

At the 2011 Touch Gesture Motion conference, one company that got a fair bit of attention was Flatfrog, who uses a light-based approach, with LEDs and sensors around the screen to triangulate positions. At the 2012 Touch Gesture Motion conference, when 2D seemed so 2011, pressure was a more frequent topic of conversation. But clearly a visual technology like Flatfrog’s wouldn’t be amenable to measuring pressure since there is nothing to sense the pressure.

Unless…

If you have a squishy object like a finger, then you can use what I’ll call the squish factor to infer pressure. This is what Flatfrog does: when a finger (for example) touches down, they normalize the width of the item, and then they track as that width widens due to the squishing of the finger (or whatever). Which means that this works with materials that squish. Metal? Not so much.

You might wonder how they can resolve such small movements using an array of LEDs that are millimeters apart. For a single LED and an array of sensors, for example, the resolution might indeed be insufficient. But because they have so many LEDs, the combined measurements from all of them allow them to resolve small micro-structures.

There is a cost to this, of course, in processing: it adds about 100 million instructions per second to the processing. “Ouch!” you say? Actually, it’s not that bad: their basic processing budget without pressure is about 2 billion instructions per second, so this is about a 5% adder.

More information at their website

Leave a Reply

featured blogs
Jul 25, 2025
Manufacturers cover themselves by saying 'Contents may settle' in fine print on the package, to which I reply, 'Pull the other one'”it's got bells on it!'...

featured paper

Agilex™ 3 vs. Certus-N2 Devices: Head-to-Head Benchmarking on 10 OpenCores Designs

Sponsored by Altera

Explore how Agilex™ 3 FPGAs deliver up to 2.4× higher performance and 30% lower power than comparable low-cost FPGAs in embedded applications. This white paper benchmarks real workloads, highlights key architectural advantages, and shows how Agilex 3 enables efficient AI, vision, and control systems with headroom to scale.

Click to read more

featured chalk talk

Infineon Automotive MOSFETs Expertise and the OptiMOS™ 7 Advantage
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Joseph Sara and Amelia Dalton explore the mega trends motivating MOSFET innovation and the details of Infineon’s cutting-edge MOSFET solutions. They also explore the benefits of Infineon’s OptiMOS 7 platform and how you can take advantage of Infineon MOSFETs for your next design.
Jul 21, 2025
5,245 views