industry news
Subscribe Now

The Future of Edge AI: Dye-Sensitized Solar Cell-Based Synaptic Device

A novel physical reservoir computing device that mimics human synaptic behavior for efficient edge AI processing
Physical reservoir computing (PRC) utilizing synaptic devices shows significant promise for edge AI. Researchers from the Tokyo University of Science have introduced a novel self-powered dye-sensitized solar cell-based device that mimics human synaptic behavior for efficient edge AI processing, inspired by the eye’s afterimage phenomenon. The device has light intensity-controllable time constants, helping it achieve high performance during time-series data processing and motion recognition tasks. This work is a major step toward multiple time-scale PRC.
Artificial intelligence (AI) is becoming increasingly useful for the prediction of emergency events such as heart attacks, natural disasters, and pipeline failures. This requires state-of-the-art technologies that can rapidly process data. In this regard, reservoir computing, specially designed for time-series data processing with low power consumption, is a promising option. It can be implemented in various frameworks, among which physical reservoir computing (PRC) is the most popular. PRC with optoelectronic artificial synapses (junction structures that permit a nerve cell to transmit an electrical or chemical signal to another cell) that mimic human synaptic elements are expected to have unparalleled recognition and real-time processing capabilities akin to the human visual system.
However, PRC based on existing self-powered optoelectronic synaptic devices cannot handle time-series data across multiple timescales, present in signals for monitoring infrastructure, natural environment, and health conditions.
In a recent breakthrough, a team of researchers from the Department of Applied Electronics, Graduate School of Advanced Engineering, Tokyo University of Science (TUS), led by Associate Professor Takashi Ikuno and including Mr. Hiroaki Komatsu, and Ms. Norika Hosoda, has successfully fabricated a self-powered dye-sensitized solar cell-based optoelectronic photopolymeric human synapse with a time constant that can be controlled by the input light intensity. Their study was published online on October 28, 2024, in the journal ACS Applied Materials & Interfaces.
Dr. Ikuno explains the motivation behind their research: “In order to process time-series input optical data with various time scales, it is essential to fabricate devices according to the desired time scale. Inspired by the afterimage phenomenon of the eye, we came up with a novel optoelectronic human synaptic device that can serve as a computational framework for power-saving edge AI optical sensors.”
The solar cell-based device utilizes squarylium derivative-based dyes and incorporates optical input, AI computation, analog output, and power supply functions in the device itself at the material level. It exhibits synaptic plasticity in response to light intensity, showing synaptic features such as paired-pulse facilitation and paired-pulse depression. The researchers demonstrated that adjusting the light intensity results in high computational performance in time-series data processing tasks, irrespective of the input light pulse width.
Furthermore, when this device was used as the reservoir layer of PRC, it classified human movements such as bending, jumping, running, and walking with more than 90% accuracy. Additionally, the power consumption was just 1% of that required by conventional systems, which would also significantly reduce the associated carbon emissions. “We have demonstrated for the first time in the world that the developed device can operate with very low power consumption and yet identify human motion with a high accuracy rate,” emphasizes Dr. Ikuno.
Notably, the proposed device opens a new path toward the realization of edge AI sensors for various time scales, with applications in surveillance cameras, car cameras, and health monitoring. According to Dr. Ikuno, “This invention can be used as a massively popular edge AI optical sensor that can be attached to any object or person, and can impact the cost involved in power consumption, such as car-mounted cameras and car-mounted computers.” He adds, “This device can function as a sensor that can identify human movement with low power consumption, and thus has the potential to contribute to the improvement of vehicle power consumption. Furthermore, it is expected to be used as a low power consumption optical sensor in stand-alone smartwatches and medical devices, significantly reducing their costs to be comparable or even lower than that of current medical devices.”
To conclude, this novel solar cell-based device has the potential to accelerate the development of energy-efficient edge AI sensors with varied applications.
 
Reference                          
Title of original paper: Self-Powered Dye-Sensitized Solar-Cell-Based Synaptic Devices for Multi-Scale Time-Series Data Processing in Physical Reservoir Computing
Journal: ACS Applied Materials & Interfaces

Leave a Reply

featured blogs
Dec 2, 2024
The Wi-SUN Smart City Living Lab Challenge names the winners with Farmer's Voice, a voice command app for agriculture use, taking first place. Read the blog....
Dec 3, 2024
I've just seen something that is totally droolworthy, which may explain why I'm currently drooling all over my keyboard....

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

ROHM’s 3rd Gen 650V IGBT for a Wide range of Applications: RGW and RGWS Series
In this episode of Chalk Talk, Amelia Dalton and Heath Ogurisu from ROHM Semiconductor investigate the benefits of ROHM Semiconductor’s RGW and RGWS Series of IGBTs. They explore how the soft switching of these hybrid IGBTs contribute to energy savings and power generation efficiency and why these IGBTs provide a well-balanced solution for switching and cost.
Jun 5, 2024
33,763 views