industry news
Subscribe Now

Purdue’s ViPER Group innovates high-energy-density, long life-cycle rechargeable litium metal batteries

Research conducted by Purdue’s Vilas Pol Energy Research (ViPER) Group shows promise for developing high-energy-density rechargeable Lithium (Li)-metal batteries (LMB) and addressing the electrochemical oxidation instability of ether-based electrolytes.

The research was published in the Feb. 10, 2023 issue of Nature Communications,  a peer-reviewed, open access, scientific journal published by Nature Portfolio. Zheng Li, a graduate research assistant in the Davidson School of Chemical Engineering, was the lead author.

The focus of the ViPER Group is the design and fabrication of high-capacity materials for next generation safer Lithium-ion, Lithium-sulfur, Sodium-ion, Solid-state and ultralow temperature battery systems. “The rapid growth of energy storage technologies aimed at reducing proposed carbon emission targets, and huge demands of energy storage systems also exist in the consumer electronic and electric vehicle markets. They call for next-generation Li batteries with higher energy density with enhanced safety,” says Vilas Pol, a professor of chemical engineering who has led Purdue’s premier laboratories for battery fabrication, electrochemical and thermal safety testing since 2014.

Replacing the conventional graphite anode material with high-energy lithium metal is a very promising approach. However, this “holy grail” anode material suffers from challenging drawbacks of low cyclability and safety, etc.

“From the perspective of fundamental research on new LMB technologies, it is critical to meticulously develop suitable liquid electrolyte chemistry that works with promising anodes and cathodes,” said Pol.

In their study, the researchers demonstrated that low concentration ether-based electrolyte can successfully endure the long-term high voltage (4.3 V) operation of practical LMB under industry viable configurations, when using the highly nonpolar dipropyl ether as the electrolyte solvent.

“Realizing the long-term cycling of Li metal anode and high-voltage cathode simultaneously with dilute ether-based electrolyte is the main challenge in this study,” said Li. “Ethers have poor oxidation stability despite their reasonable compatibilities to the Li metal anode. It was thus our target to extend their high-voltage capabilities. From the molecular level, we confirmed the essential correlations between the solvation behaviors of dilute ether-based electrolytes and their performance on high-voltage positive electrode.”

The correlations were further interpreted via detailed classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations coupled with multimodal experimental analyses. It was demonstrated that regulating the solvation structure of ether-based electrolytes can rearrange the degradation order of solvation species and selectively form a robust protection on the cathode surface. It also adjusts the composition of surficial electric double layer to prevent the ether oxidation.

This unique kinetic-suppression approach differs from the conventional strategies such as using ultra-high concentration electrolyte or introducing molecular fluorination to improve the electrolyte stability, which dramatically increase the battery cost. The developed LMB by the ViPER group is expected to improve 40% of energy density, compared to the conventional Li-ion batteries.

The research work is funded by the Naval Enterprise Partnership Teaming with Universities for National Excellence (NEPTUNE), Office of Naval Research.

ABSTRACT

Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries

Zheng Li, lead author; Vilas G. Pol

Purdue University, Davidson School of Chemical Engineering 

The electrochemical instability of ether-based electrolyte solutions hinders their practical applications in high-voltage Li metal batteries. To circumvent this issue, here, we propose a dilution strategy to lose the Li+/solvent interaction and use the dilute non-aqueous electrolyte solution in high-voltage lithium metal batteries. We demonstrate that in a non-polar dipropyl ether (DPE)-based electrolyte solution with lithium bis(fluorosulfonyl) imide salt, the decomposition order of solvated species can be adjusted to promote the Li+/salt-derived anion clusters decomposition over free ether solvent molecules. This selective mechanism favors the formation of a robust cathode electrolyte interphase (CEI) and a solvent-deficient electric double-layer structure at the positive electrode interface. When the DPE-based electrolyte is tested in combination with a Li metal negative electrode (50 μm thick) and a LiNi0.8Co0.1Mn0.1O2-based positive electrode (3.3 mAh/cm2) in pouch cell configuration at 25 °C, a specific discharge capacity retention of about 74% after 150 cycles (0.33 and 1 mA/cm2 charge and discharge, respectively) is obtained.

 

For more on Pol’s research, visit Purdue Engineers Create Safer Solid State Lithium Ion Batteries from New Composite Materials

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

FleClear: TDK’s Transparent Conductive Ag Film
Sponsored by Mouser Electronics and TDK
In this episode of Chalk Talk, Amelia Dalton and Chris Burket from TDK investigate the what, where, and how of TDK’s transparent conductive Ag film called FleClear. They examine the benefits that FleClear brings to the table when it comes to transparency, surface resistance and haze. They also chat about how FleClear compares to other similar solutions on the market today and how you can utilize FleClear in your next design.
Feb 7, 2024
10,966 views