industry news
Subscribe Now

Purdue’s ViPER Group innovates high-energy-density, long life-cycle rechargeable litium metal batteries

Research conducted by Purdue’s Vilas Pol Energy Research (ViPER) Group shows promise for developing high-energy-density rechargeable Lithium (Li)-metal batteries (LMB) and addressing the electrochemical oxidation instability of ether-based electrolytes.

The research was published in the Feb. 10, 2023 issue of Nature Communications,  a peer-reviewed, open access, scientific journal published by Nature Portfolio. Zheng Li, a graduate research assistant in the Davidson School of Chemical Engineering, was the lead author.

The focus of the ViPER Group is the design and fabrication of high-capacity materials for next generation safer Lithium-ion, Lithium-sulfur, Sodium-ion, Solid-state and ultralow temperature battery systems. “The rapid growth of energy storage technologies aimed at reducing proposed carbon emission targets, and huge demands of energy storage systems also exist in the consumer electronic and electric vehicle markets. They call for next-generation Li batteries with higher energy density with enhanced safety,” says Vilas Pol, a professor of chemical engineering who has led Purdue’s premier laboratories for battery fabrication, electrochemical and thermal safety testing since 2014.

Replacing the conventional graphite anode material with high-energy lithium metal is a very promising approach. However, this “holy grail” anode material suffers from challenging drawbacks of low cyclability and safety, etc.

“From the perspective of fundamental research on new LMB technologies, it is critical to meticulously develop suitable liquid electrolyte chemistry that works with promising anodes and cathodes,” said Pol.

In their study, the researchers demonstrated that low concentration ether-based electrolyte can successfully endure the long-term high voltage (4.3 V) operation of practical LMB under industry viable configurations, when using the highly nonpolar dipropyl ether as the electrolyte solvent.

“Realizing the long-term cycling of Li metal anode and high-voltage cathode simultaneously with dilute ether-based electrolyte is the main challenge in this study,” said Li. “Ethers have poor oxidation stability despite their reasonable compatibilities to the Li metal anode. It was thus our target to extend their high-voltage capabilities. From the molecular level, we confirmed the essential correlations between the solvation behaviors of dilute ether-based electrolytes and their performance on high-voltage positive electrode.”

The correlations were further interpreted via detailed classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations coupled with multimodal experimental analyses. It was demonstrated that regulating the solvation structure of ether-based electrolytes can rearrange the degradation order of solvation species and selectively form a robust protection on the cathode surface. It also adjusts the composition of surficial electric double layer to prevent the ether oxidation.

This unique kinetic-suppression approach differs from the conventional strategies such as using ultra-high concentration electrolyte or introducing molecular fluorination to improve the electrolyte stability, which dramatically increase the battery cost. The developed LMB by the ViPER group is expected to improve 40% of energy density, compared to the conventional Li-ion batteries.

The research work is funded by the Naval Enterprise Partnership Teaming with Universities for National Excellence (NEPTUNE), Office of Naval Research.

ABSTRACT

Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries

Zheng Li, lead author; Vilas G. Pol

Purdue University, Davidson School of Chemical Engineering 

The electrochemical instability of ether-based electrolyte solutions hinders their practical applications in high-voltage Li metal batteries. To circumvent this issue, here, we propose a dilution strategy to lose the Li+/solvent interaction and use the dilute non-aqueous electrolyte solution in high-voltage lithium metal batteries. We demonstrate that in a non-polar dipropyl ether (DPE)-based electrolyte solution with lithium bis(fluorosulfonyl) imide salt, the decomposition order of solvated species can be adjusted to promote the Li+/salt-derived anion clusters decomposition over free ether solvent molecules. This selective mechanism favors the formation of a robust cathode electrolyte interphase (CEI) and a solvent-deficient electric double-layer structure at the positive electrode interface. When the DPE-based electrolyte is tested in combination with a Li metal negative electrode (50 μm thick) and a LiNi0.8Co0.1Mn0.1O2-based positive electrode (3.3 mAh/cm2) in pouch cell configuration at 25 °C, a specific discharge capacity retention of about 74% after 150 cycles (0.33 and 1 mA/cm2 charge and discharge, respectively) is obtained.

 

For more on Pol’s research, visit Purdue Engineers Create Safer Solid State Lithium Ion Batteries from New Composite Materials

Leave a Reply

featured blogs
Jun 2, 2023
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....
Jun 2, 2023
Explore the importance of big data analytics in the semiconductor manufacturing process, as chip designers pull insights from throughout the silicon lifecycle. The post Demanding Chip Complexity and Manufacturing Requirements Call for Data Analytics appeared first on New Hor...

featured video

Automatically Generate, Budget and Optimize UPF with Synopsys Verdi UPF Architect

Sponsored by Synopsys

Learn to translate a high-level power intent from CSV to a consumable UPF across a typical ASIC design flow using Verdi UPF Architect. Power Architect can focus on the efficiency of the Power Intent instead of worrying about Syntax & UPF Semantics.

Learn more about Synopsys’ Energy-Efficient SoCs Solutions

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Enable Sustainable Enterprises of the Future
Did you know that buildings are responsible for 40% of global energy consumption and 33% of greenhouse gas emissions? One way we can help both modernize and increase sustainability in our buildings is by adding 10BASE-T1L to our building controllers. In this episode of Chalk Talk, Amelia Dalton chats with Salem Gharbi from Analog Devices about how we can enable sustainable enterprises with ethernet connected building controllers. They examine the10BASE-T1L flexible design solutions that Analog Devices offers, how exiting?building infrastructure can take advantage of 10BASE-T1L and how you can get started on your next sustainable enterprise journey.
Dec 20, 2022
21,808 views