industry news
Subscribe Now

NXP Introduces High-Performance S32K39 Series MCUs for Modern Electrification Applications

• Addresses new electric vehicle (EV) traction inverter control needs with compelling combination of performance, integration, networking, security and functional safety
• Supports remote smart actuation applications using Time-Sensitive Networking (TSN) Ethernet for new zonal vehicle architectures
• Reduces system cost with ASIL D software resolver and analog integration

Electronica, MUNICH, Germany, November 15, 2022 – NXP Semiconductors (NASDAQ: NXPI), the leader in automotive processors, today announced a new S32K39 series of automotive microcontrollers (MCUs) optimized for electric vehicle (EV) control applications. The modern S32K39 MCUs take electrification into the future with high-speed and high-resolution control for increased power efficiency to extend driving range and provide a smoother EV driving experience. The S32K39 MCUs include networking, security and functional safety capabilities beyond traditional automotive MCUs to address the needs of zonal vehicle E/E architectures and software-defined vehicles. The new MCUs enable NXP’s battery management system (BMS) and EV power inverters to provide end-to-end solutions for next-generation EVs.

The high-performance S32K39 MCUs are optimized for the intelligent and high-precision control of traction inverters that convert the EV battery’s DC power into alternating current to drive modern traction motors. The MCUs support traditional insulated-gate bipolar transistors (IGBT), as well as newer silicon carbide (SiC) and gallium nitride (GaN) technologies. With dual 200 kHz control loops to improve power efficiency, these can enable smaller, lighter, more efficient inverters, allowing motors to deliver a longer driving range. They can also control six-phase motors with increased power density and fault tolerance for improved long-term reliability. A safe ASIL D software resolver, along with integrated sine wave generation and sigma delta converters, eliminate external components for reduced overall system cost. The S32K39 also provides flexibility to control up to quad traction inverters when coupled with the NXP S32E real-time processor and can implement advanced traction capabilities for 4-wheel drive EVs in this configuration.

Because of its versatile architecture, the S32K39 series is well-suited to address a wide range of EV applications beyond traction inverter control, including battery management (BMS), on-board charging (OBC) and DC/DC conversion. With support for hardware isolation, time-sensitive networking and advanced cryptography, it is well-positioned to support software-defined vehicles and zonal architectures.

“The S32K39 MCUs offer a compelling combination of modern technology that provide carmakers tremendous flexibility and scalability to accelerate their EV development and deploy the latest electrification technologies,” said Allan Mcauslin, Director, Vehicle Control and Electrification Segment at NXP Semiconductors. “NXP is leading the way with a comprehensive portfolio of complementary solutions to give our customers the ability to provide better EV driving experiences and help accelerate the electric vehicle revolution.”

About the S32K39
• Highest performance member of the S32K family with four Arm® Cortex®-M7 cores at 320 MHz configured as a lockstep pair and two split-lock cores
• Up to 6 MB of flash memory and 800 KB of SRAM
• Two motor control coprocessors and NanoEdge™ high-resolution pulse-width modulation (PWM) for higher performance and precision control
• Safe ASIL D software resolver eliminates external components and reduces cost
• Integrated DSP for flexible digital filtering and machine learning (ML) algorithms
• Multi-channel analog support with SAR and sigma-delta A/D converters, comparators and sine wave generators for resolver excitation
• Six CAN FD interfaces, TSN Ethernet and many advanced programmable I/Os
• Hardware security engine (HSE) for trusted boot, security services, secure over-the-air (OTA) updates using Public Key Infrastructure (PKI) and key management
• S32K37 versions (without the two motor control processors) are also available
• Developed with certified ISO/SAE 21434 cybersecurity and ISO 26262 functional safety processes
• Available in two packages: 176LPQFP-EP and 289MAPBGA

System Solution Availability
Engineering samples, evaluation boards, and a comprehensive set of software support and tools are now available for lead customers. The S32K39 MCUs can be combined with the NXP FS26 safety system basis chip (SBC) and the advanced high voltage isolated gate driver GD3162 with adjustable dynamic gate strength control for a safe inverter control system. Both support the highest level of functional safety (ASIL D) for traction inverter development. Production release is planned for Q4 2023.

About NXP’s Electrification Solutions
The robust, open architecture of NXP’s electrification solutions enables safer, more secure two-way communication from electrified end points to the cloud. Our integrated and embedded technologies give product designers and service providers confidence to build systems with the highest security and safety standards; with insights to improve the performance for the whole product life cycle. NXP electrification solutions offer control throughout the whole ecosystem, not just one part – handling battery management, efficient motor drive, fast charging, and load balancing across entire grids.

For more information, please visit nxp.com/S32K39.

About NXP Semiconductors
NXP Semiconductors N.V. (NASDAQ: NXPI) enables a smarter, safer and more sustainable world through innovation. As a world leader in secure connectivity solutions for embedded applications, NXP is pushing boundaries in the automotive, industrial & IoT, mobile, and communication infrastructure markets. Built on more than 60 years of combined experience and expertise, the company has approximately 31,000 employees in more than 30 countries and posted revenue of $11.06 billion in 2021. Find out more at www.nxp.com.

Leave a Reply

featured blogs
Dec 6, 2023
Optimizing a silicon chip at the system level is crucial in achieving peak performance, efficiency, and system reliability. As Moore's Law faces diminishing returns, simply transitioning to the latest process node no longer guarantees substantial power, performance, or c...
Dec 6, 2023
Explore standards development and functional safety requirements with Jyotika Athavale, IEEE senior member and Senior Director of Silicon Lifecycle Management.The post Q&A With Jyotika Athavale, IEEE Champion, on Advancing Standards Development Worldwide appeared first ...
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

Intel AI Update
Sponsored by Mouser Electronics and Intel
In this episode of Chalk Talk, Amelia Dalton and Peter Tea from Intel explore how Intel is making AI implementation easier than ever before. They examine the typical workflows involved in artificial intelligence designs, the benefits that Intel’s scalable Xeon processor brings to AI projects, and how you can take advantage of the Intel AI ecosystem to further innovation in your next design.
Oct 6, 2023
7,502 views